Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769897373> ?p ?o ?g. }
- W2769897373 endingPage "2504" @default.
- W2769897373 startingPage "2490" @default.
- W2769897373 abstract "Compared to studies of analyzing hyperspectral image (HSI), finding spectral rectification, especially the seriously distorted pixels in boundaries, was seldom addressed in a clear way, albeit of first importance in HSI analysis and interpretation. In this paper, we present a simple but promising rectification method works in a coarse-to-fine framework for removing noise and enhancing useful features. Our approach, called CSR (coarse-to-fine spectral rectification), combines the theory of scale-aware with local smoothness for HSI rectification problem that is seldom pointed out. The useless information like noise in small scale is removed firstly. Then, the distinctive information like boundary in large scale is enhanced. The experimental result enjoys a built-in smoothing effect and a fact of the identical materials with same or similar signatures, which is suited for HSI subsequent application. Furthermore, our approach has powerful influence on both classification via five classifiers in terms of class labeled data and unmixing regarding to class unlabeled data. Rectified by a coarse-to-fine framework, our method presents superior performance and runs much faster than the competing methods." @default.
- W2769897373 created "2017-12-04" @default.
- W2769897373 creator A5000755240 @default.
- W2769897373 creator A5052163069 @default.
- W2769897373 creator A5059433400 @default.
- W2769897373 creator A5067798266 @default.
- W2769897373 date "2018-01-01" @default.
- W2769897373 modified "2023-10-18" @default.
- W2769897373 title "Efficient coarse-to-fine spectral rectification for hyperspectral image" @default.
- W2769897373 cites W1487458526 @default.
- W2769897373 cites W1583106483 @default.
- W2769897373 cites W1928626817 @default.
- W2769897373 cites W1964325474 @default.
- W2769897373 cites W1997565609 @default.
- W2769897373 cites W1999331929 @default.
- W2769897373 cites W1999663947 @default.
- W2769897373 cites W2013111720 @default.
- W2769897373 cites W2015679947 @default.
- W2769897373 cites W2018482939 @default.
- W2769897373 cites W2039596145 @default.
- W2769897373 cites W2053514113 @default.
- W2769897373 cites W2071282575 @default.
- W2769897373 cites W2072026894 @default.
- W2769897373 cites W2072994047 @default.
- W2769897373 cites W2074846506 @default.
- W2769897373 cites W2094691487 @default.
- W2769897373 cites W2106277226 @default.
- W2769897373 cites W2111072639 @default.
- W2769897373 cites W2114819256 @default.
- W2769897373 cites W2125188192 @default.
- W2769897373 cites W2131697388 @default.
- W2769897373 cites W2149471024 @default.
- W2769897373 cites W2151103935 @default.
- W2769897373 cites W2153635508 @default.
- W2769897373 cites W2157321686 @default.
- W2769897373 cites W2165027276 @default.
- W2769897373 cites W2166040020 @default.
- W2769897373 cites W2166923144 @default.
- W2769897373 cites W2242603519 @default.
- W2769897373 cites W2249336288 @default.
- W2769897373 cites W2261059368 @default.
- W2769897373 cites W2278837653 @default.
- W2769897373 cites W2314528731 @default.
- W2769897373 cites W2315347323 @default.
- W2769897373 cites W2327302159 @default.
- W2769897373 cites W2327364376 @default.
- W2769897373 cites W2335197470 @default.
- W2769897373 cites W2336230670 @default.
- W2769897373 cites W2346155541 @default.
- W2769897373 cites W2346953190 @default.
- W2769897373 cites W2395448127 @default.
- W2769897373 cites W2407609312 @default.
- W2769897373 cites W2414009677 @default.
- W2769897373 cites W2417947228 @default.
- W2769897373 cites W2507855991 @default.
- W2769897373 cites W2518301555 @default.
- W2769897373 cites W2519307493 @default.
- W2769897373 cites W2519420704 @default.
- W2769897373 cites W2533102868 @default.
- W2769897373 cites W2533971697 @default.
- W2769897373 cites W2567850567 @default.
- W2769897373 doi "https://doi.org/10.1016/j.neucom.2017.11.038" @default.
- W2769897373 hasPublicationYear "2018" @default.
- W2769897373 type Work @default.
- W2769897373 sameAs 2769897373 @default.
- W2769897373 citedByCount "10" @default.
- W2769897373 countsByYear W27698973732018 @default.
- W2769897373 countsByYear W27698973732019 @default.
- W2769897373 countsByYear W27698973732020 @default.
- W2769897373 countsByYear W27698973732022 @default.
- W2769897373 countsByYear W27698973732023 @default.
- W2769897373 crossrefType "journal-article" @default.
- W2769897373 hasAuthorship W2769897373A5000755240 @default.
- W2769897373 hasAuthorship W2769897373A5052163069 @default.
- W2769897373 hasAuthorship W2769897373A5059433400 @default.
- W2769897373 hasAuthorship W2769897373A5067798266 @default.
- W2769897373 hasConcept C115961682 @default.
- W2769897373 hasConcept C121332964 @default.
- W2769897373 hasConcept C127313418 @default.
- W2769897373 hasConcept C153180895 @default.
- W2769897373 hasConcept C154945302 @default.
- W2769897373 hasConcept C159078339 @default.
- W2769897373 hasConcept C160633673 @default.
- W2769897373 hasConcept C163258240 @default.
- W2769897373 hasConcept C2777212361 @default.
- W2769897373 hasConcept C2778755073 @default.
- W2769897373 hasConcept C31972630 @default.
- W2769897373 hasConcept C3770464 @default.
- W2769897373 hasConcept C41008148 @default.
- W2769897373 hasConcept C50942859 @default.
- W2769897373 hasConcept C62520636 @default.
- W2769897373 hasConcept C62649853 @default.
- W2769897373 hasConcept C99498987 @default.
- W2769897373 hasConceptScore W2769897373C115961682 @default.
- W2769897373 hasConceptScore W2769897373C121332964 @default.
- W2769897373 hasConceptScore W2769897373C127313418 @default.
- W2769897373 hasConceptScore W2769897373C153180895 @default.
- W2769897373 hasConceptScore W2769897373C154945302 @default.