Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769964319> ?p ?o ?g. }
- W2769964319 abstract "Texture segmentation and classification are major issues in computer vision that have not yet been fully explored in the framework of irregularly sample data. Unlike well known image restoration techniques, many analysis methods are mainly concerned with obtaining data representation in a feature space and developing effective distance measures for image discrimination, with no interest in reconstructing back the image from the feature space. On avoiding the later, simpler approaches to image analysis may be developed. This thesis constitutes a research on texture analysis for feature extraction, classification and segmentation of irregularly sampled images. In a real scenario, irregularity in the sampling pattern may be a matter of either an inherent problem property, such as in gathering data in geosciences, or a deliberate design, such as retinomorphic sampling. To extend our results to either case, we introduced irregular sampling by investigating the spatial distributions of three sampling patterns. The first pattern is generated from the uniform distribution. The other two sampling patterns consist of inhomogeniously distributed data, with denser concentration towards the middle, to imitate the biological vision paradigm. One follows the Gaussian distribution and the other the log-pollar distribution. In addition, we extend two of the major approaches in image analysis to irregularly sampled data. The first, co-occurrence matrices, is a statistical approach, which is applied to texture classification. The second approach, Gabor analysis, is extended for unsupervised texture segmentation by using the Fourier transform for non-uniformly sampled data. Following a new trend which looks to enhance computer vision with the functionality of human vision, biologically inspired processing was progressively incorporated into our algorithms to the point of proposing a biological paradigm for image segmentation. Finally, we investigate the use of Gabor analysis for 3D irregularly sampled data, and in particular for the segmentation of volumetric seismic data obtained by the oil industry. The results, however, of this study are rather disappointing." @default.
- W2769964319 created "2017-12-04" @default.
- W2769964319 creator A5016308470 @default.
- W2769964319 date "2006-01-01" @default.
- W2769964319 modified "2023-09-24" @default.
- W2769964319 title "Texture analysis from irregularly sampled data" @default.
- W2769964319 cites W1495954354 @default.
- W2769964319 cites W1511730442 @default.
- W2769964319 cites W1518090836 @default.
- W2769964319 cites W152372666 @default.
- W2769964319 cites W1528775006 @default.
- W2769964319 cites W1780934799 @default.
- W2769964319 cites W192729464 @default.
- W2769964319 cites W1975826938 @default.
- W2769964319 cites W1976449612 @default.
- W2769964319 cites W2031586513 @default.
- W2769964319 cites W2046771125 @default.
- W2769964319 cites W2060992025 @default.
- W2769964319 cites W2071485558 @default.
- W2769964319 cites W2105008309 @default.
- W2769964319 cites W2110599368 @default.
- W2769964319 cites W2125614842 @default.
- W2769964319 cites W2131074607 @default.
- W2769964319 cites W2131339961 @default.
- W2769964319 cites W2134394617 @default.
- W2769964319 cites W2148253699 @default.
- W2769964319 cites W2150120413 @default.
- W2769964319 cites W2154410899 @default.
- W2769964319 cites W2158372379 @default.
- W2769964319 cites W2163352848 @default.
- W2769964319 cites W2171096036 @default.
- W2769964319 cites W2171727778 @default.
- W2769964319 cites W235671544 @default.
- W2769964319 cites W2481018560 @default.
- W2769964319 cites W2482770265 @default.
- W2769964319 cites W143050442 @default.
- W2769964319 hasPublicationYear "2006" @default.
- W2769964319 type Work @default.
- W2769964319 sameAs 2769964319 @default.
- W2769964319 citedByCount "0" @default.
- W2769964319 crossrefType "dissertation" @default.
- W2769964319 hasAuthorship W2769964319A5016308470 @default.
- W2769964319 hasConcept C106131492 @default.
- W2769964319 hasConcept C115961682 @default.
- W2769964319 hasConcept C124504099 @default.
- W2769964319 hasConcept C138885662 @default.
- W2769964319 hasConcept C140779682 @default.
- W2769964319 hasConcept C153180895 @default.
- W2769964319 hasConcept C154945302 @default.
- W2769964319 hasConcept C2776401178 @default.
- W2769964319 hasConcept C2781195486 @default.
- W2769964319 hasConcept C31972630 @default.
- W2769964319 hasConcept C41008148 @default.
- W2769964319 hasConcept C41895202 @default.
- W2769964319 hasConcept C52622490 @default.
- W2769964319 hasConcept C63099799 @default.
- W2769964319 hasConcept C83665646 @default.
- W2769964319 hasConcept C89600930 @default.
- W2769964319 hasConceptScore W2769964319C106131492 @default.
- W2769964319 hasConceptScore W2769964319C115961682 @default.
- W2769964319 hasConceptScore W2769964319C124504099 @default.
- W2769964319 hasConceptScore W2769964319C138885662 @default.
- W2769964319 hasConceptScore W2769964319C140779682 @default.
- W2769964319 hasConceptScore W2769964319C153180895 @default.
- W2769964319 hasConceptScore W2769964319C154945302 @default.
- W2769964319 hasConceptScore W2769964319C2776401178 @default.
- W2769964319 hasConceptScore W2769964319C2781195486 @default.
- W2769964319 hasConceptScore W2769964319C31972630 @default.
- W2769964319 hasConceptScore W2769964319C41008148 @default.
- W2769964319 hasConceptScore W2769964319C41895202 @default.
- W2769964319 hasConceptScore W2769964319C52622490 @default.
- W2769964319 hasConceptScore W2769964319C63099799 @default.
- W2769964319 hasConceptScore W2769964319C83665646 @default.
- W2769964319 hasConceptScore W2769964319C89600930 @default.
- W2769964319 hasLocation W27699643191 @default.
- W2769964319 hasOpenAccess W2769964319 @default.
- W2769964319 hasPrimaryLocation W27699643191 @default.
- W2769964319 hasRelatedWork W153208235 @default.
- W2769964319 hasRelatedWork W1588686694 @default.
- W2769964319 hasRelatedWork W200886362 @default.
- W2769964319 hasRelatedWork W2032059046 @default.
- W2769964319 hasRelatedWork W2067539556 @default.
- W2769964319 hasRelatedWork W2082014491 @default.
- W2769964319 hasRelatedWork W2094627488 @default.
- W2769964319 hasRelatedWork W2133245175 @default.
- W2769964319 hasRelatedWork W2138876369 @default.
- W2769964319 hasRelatedWork W2164962237 @default.
- W2769964319 hasRelatedWork W2401949243 @default.
- W2769964319 hasRelatedWork W2461979327 @default.
- W2769964319 hasRelatedWork W2498890493 @default.
- W2769964319 hasRelatedWork W2613421673 @default.
- W2769964319 hasRelatedWork W275965812 @default.
- W2769964319 hasRelatedWork W2947042237 @default.
- W2769964319 hasRelatedWork W583340156 @default.
- W2769964319 hasRelatedWork W88817261 @default.
- W2769964319 hasRelatedWork W2242382051 @default.
- W2769964319 hasRelatedWork W2741607575 @default.
- W2769964319 isParatext "false" @default.
- W2769964319 isRetracted "false" @default.
- W2769964319 magId "2769964319" @default.