Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770212906> ?p ?o ?g. }
- W2770212906 endingPage "11" @default.
- W2770212906 startingPage "1" @default.
- W2770212906 abstract "We introduce a deep learning approach for grouping discrete patterns common in graphical designs. Our approach is based on a convolutional neural network architecture that learns a grouping measure defined over a pair of pattern elements. Motivated by perceptual grouping principles, the key feature of our network is the encoding of element shape, context, symmetries, and structural arrangements. These element properties are all jointly considered and appropriately weighted in our grouping measure. To better align our measure with human perceptions for grouping, we train our network on a large, human-annotated dataset of pattern groupings consisting of patterns at varying granularity levels, with rich element relations and varieties, and tempered with noise and other data imperfections. Experimental results demonstrate that our deep-learned measure leads to robust grouping results." @default.
- W2770212906 created "2017-12-04" @default.
- W2770212906 creator A5002582422 @default.
- W2770212906 creator A5003312344 @default.
- W2770212906 creator A5043661491 @default.
- W2770212906 creator A5045863346 @default.
- W2770212906 creator A5049341927 @default.
- W2770212906 creator A5057980496 @default.
- W2770212906 creator A5084953118 @default.
- W2770212906 date "2017-11-20" @default.
- W2770212906 modified "2023-09-24" @default.
- W2770212906 title "Learning to group discrete graphical patterns" @default.
- W2770212906 cites W1644641054 @default.
- W2770212906 cites W1748744376 @default.
- W2770212906 cites W1831667915 @default.
- W2770212906 cites W1869500417 @default.
- W2770212906 cites W1955601057 @default.
- W2770212906 cites W1975418237 @default.
- W2770212906 cites W1975807399 @default.
- W2770212906 cites W1976645892 @default.
- W2770212906 cites W1979092426 @default.
- W2770212906 cites W1994838542 @default.
- W2770212906 cites W2007098048 @default.
- W2770212906 cites W2015887370 @default.
- W2770212906 cites W2023507039 @default.
- W2770212906 cites W2029018935 @default.
- W2770212906 cites W2041411484 @default.
- W2770212906 cites W2048623760 @default.
- W2770212906 cites W2110158442 @default.
- W2770212906 cites W2117539524 @default.
- W2770212906 cites W2117878059 @default.
- W2770212906 cites W2121947440 @default.
- W2770212906 cites W2138621090 @default.
- W2770212906 cites W2160026749 @default.
- W2770212906 cites W2165232124 @default.
- W2770212906 cites W2465314979 @default.
- W2770212906 cites W2483076098 @default.
- W2770212906 cites W2558835474 @default.
- W2770212906 cites W2736736899 @default.
- W2770212906 cites W2962852342 @default.
- W2770212906 cites W2963630186 @default.
- W2770212906 cites W2997554448 @default.
- W2770212906 cites W4232823613 @default.
- W2770212906 cites W4296980399 @default.
- W2770212906 doi "https://doi.org/10.1145/3130800.3130841" @default.
- W2770212906 hasPublicationYear "2017" @default.
- W2770212906 type Work @default.
- W2770212906 sameAs 2770212906 @default.
- W2770212906 citedByCount "15" @default.
- W2770212906 countsByYear W27702129062018 @default.
- W2770212906 countsByYear W27702129062019 @default.
- W2770212906 countsByYear W27702129062020 @default.
- W2770212906 countsByYear W27702129062021 @default.
- W2770212906 countsByYear W27702129062022 @default.
- W2770212906 crossrefType "journal-article" @default.
- W2770212906 hasAuthorship W2770212906A5002582422 @default.
- W2770212906 hasAuthorship W2770212906A5003312344 @default.
- W2770212906 hasAuthorship W2770212906A5043661491 @default.
- W2770212906 hasAuthorship W2770212906A5045863346 @default.
- W2770212906 hasAuthorship W2770212906A5049341927 @default.
- W2770212906 hasAuthorship W2770212906A5057980496 @default.
- W2770212906 hasAuthorship W2770212906A5084953118 @default.
- W2770212906 hasBestOaLocation W27702129062 @default.
- W2770212906 hasConcept C108583219 @default.
- W2770212906 hasConcept C111919701 @default.
- W2770212906 hasConcept C115961682 @default.
- W2770212906 hasConcept C119857082 @default.
- W2770212906 hasConcept C124101348 @default.
- W2770212906 hasConcept C125411270 @default.
- W2770212906 hasConcept C138885662 @default.
- W2770212906 hasConcept C151730666 @default.
- W2770212906 hasConcept C153180895 @default.
- W2770212906 hasConcept C154945302 @default.
- W2770212906 hasConcept C17744445 @default.
- W2770212906 hasConcept C177774035 @default.
- W2770212906 hasConcept C199539241 @default.
- W2770212906 hasConcept C200288055 @default.
- W2770212906 hasConcept C26517878 @default.
- W2770212906 hasConcept C2776401178 @default.
- W2770212906 hasConcept C2779343474 @default.
- W2770212906 hasConcept C2780009758 @default.
- W2770212906 hasConcept C38652104 @default.
- W2770212906 hasConcept C41008148 @default.
- W2770212906 hasConcept C41895202 @default.
- W2770212906 hasConcept C80444323 @default.
- W2770212906 hasConcept C81363708 @default.
- W2770212906 hasConcept C86803240 @default.
- W2770212906 hasConcept C99498987 @default.
- W2770212906 hasConceptScore W2770212906C108583219 @default.
- W2770212906 hasConceptScore W2770212906C111919701 @default.
- W2770212906 hasConceptScore W2770212906C115961682 @default.
- W2770212906 hasConceptScore W2770212906C119857082 @default.
- W2770212906 hasConceptScore W2770212906C124101348 @default.
- W2770212906 hasConceptScore W2770212906C125411270 @default.
- W2770212906 hasConceptScore W2770212906C138885662 @default.
- W2770212906 hasConceptScore W2770212906C151730666 @default.
- W2770212906 hasConceptScore W2770212906C153180895 @default.
- W2770212906 hasConceptScore W2770212906C154945302 @default.