Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770248520> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2770248520 abstract "Soft computing technologies are the most efficient technology in the field of Bioinformatics now a days. So many researchers are very keen interested in this topic to find out many unknown facts applying soft computing techniques in the field of DNA RNA alignment, Protein Structure Prediction, Gene mapping etc. Artificial neural network is one of the good techniques for the protein structure prediction problem. Protein structure prediction is the prediction of secondary, territory and quaternary structures of protein molecules in the effect of any external agents. There are many researchers working upon the field of applying ANN technology in Protein Structure prediction. This paper provides a review upon such type of researches that are carried out over the years i.e. application of ANN in the field of Protein Structure Prediction. In this review article we have discussed various technologies like MLP, RBF, SVM, RBFN, PNN and their applications that are being carried out in several research papers. In the summary section it provides a clean comparison of research work carried out by several researches." @default.
- W2770248520 created "2017-12-04" @default.
- W2770248520 creator A5013828067 @default.
- W2770248520 creator A5068841337 @default.
- W2770248520 creator A5073887254 @default.
- W2770248520 date "2017-02-01" @default.
- W2770248520 modified "2023-09-23" @default.
- W2770248520 title "A review on application of artificial neural network(ANN) on protein secondary structure prediction" @default.
- W2770248520 cites W119859330 @default.
- W2770248520 cites W1990505632 @default.
- W2770248520 cites W2025628304 @default.
- W2770248520 cites W2034093968 @default.
- W2770248520 cites W2073905470 @default.
- W2770248520 cites W2108192608 @default.
- W2770248520 cites W2109109045 @default.
- W2770248520 cites W2119780457 @default.
- W2770248520 cites W2120986529 @default.
- W2770248520 cites W2122390081 @default.
- W2770248520 cites W2126232612 @default.
- W2770248520 cites W2134809326 @default.
- W2770248520 cites W2141335157 @default.
- W2770248520 cites W2148613589 @default.
- W2770248520 cites W2156798505 @default.
- W2770248520 cites W2160336700 @default.
- W2770248520 cites W2535591039 @default.
- W2770248520 doi "https://doi.org/10.1109/icecct.2017.8118041" @default.
- W2770248520 hasPublicationYear "2017" @default.
- W2770248520 type Work @default.
- W2770248520 sameAs 2770248520 @default.
- W2770248520 citedByCount "2" @default.
- W2770248520 countsByYear W27702485202018 @default.
- W2770248520 countsByYear W27702485202019 @default.
- W2770248520 crossrefType "proceedings-article" @default.
- W2770248520 hasAuthorship W2770248520A5013828067 @default.
- W2770248520 hasAuthorship W2770248520A5068841337 @default.
- W2770248520 hasAuthorship W2770248520A5073887254 @default.
- W2770248520 hasConcept C119857082 @default.
- W2770248520 hasConcept C12267149 @default.
- W2770248520 hasConcept C124101348 @default.
- W2770248520 hasConcept C140073362 @default.
- W2770248520 hasConcept C154945302 @default.
- W2770248520 hasConcept C18051474 @default.
- W2770248520 hasConcept C202444582 @default.
- W2770248520 hasConcept C33923547 @default.
- W2770248520 hasConcept C41008148 @default.
- W2770248520 hasConcept C47701112 @default.
- W2770248520 hasConcept C50644808 @default.
- W2770248520 hasConcept C55493867 @default.
- W2770248520 hasConcept C86803240 @default.
- W2770248520 hasConcept C9652623 @default.
- W2770248520 hasConceptScore W2770248520C119857082 @default.
- W2770248520 hasConceptScore W2770248520C12267149 @default.
- W2770248520 hasConceptScore W2770248520C124101348 @default.
- W2770248520 hasConceptScore W2770248520C140073362 @default.
- W2770248520 hasConceptScore W2770248520C154945302 @default.
- W2770248520 hasConceptScore W2770248520C18051474 @default.
- W2770248520 hasConceptScore W2770248520C202444582 @default.
- W2770248520 hasConceptScore W2770248520C33923547 @default.
- W2770248520 hasConceptScore W2770248520C41008148 @default.
- W2770248520 hasConceptScore W2770248520C47701112 @default.
- W2770248520 hasConceptScore W2770248520C50644808 @default.
- W2770248520 hasConceptScore W2770248520C55493867 @default.
- W2770248520 hasConceptScore W2770248520C86803240 @default.
- W2770248520 hasConceptScore W2770248520C9652623 @default.
- W2770248520 hasLocation W27702485201 @default.
- W2770248520 hasOpenAccess W2770248520 @default.
- W2770248520 hasPrimaryLocation W27702485201 @default.
- W2770248520 hasRelatedWork W145320874 @default.
- W2770248520 hasRelatedWork W1580441002 @default.
- W2770248520 hasRelatedWork W1777236251 @default.
- W2770248520 hasRelatedWork W2105443690 @default.
- W2770248520 hasRelatedWork W2110449938 @default.
- W2770248520 hasRelatedWork W2128344973 @default.
- W2770248520 hasRelatedWork W2154365471 @default.
- W2770248520 hasRelatedWork W2166341593 @default.
- W2770248520 hasRelatedWork W2168492302 @default.
- W2770248520 hasRelatedWork W2352275228 @default.
- W2770248520 hasRelatedWork W2364299556 @default.
- W2770248520 hasRelatedWork W2372218825 @default.
- W2770248520 hasRelatedWork W2378813033 @default.
- W2770248520 hasRelatedWork W2384333147 @default.
- W2770248520 hasRelatedWork W2914176932 @default.
- W2770248520 hasRelatedWork W2966800050 @default.
- W2770248520 hasRelatedWork W3138825839 @default.
- W2770248520 hasRelatedWork W3147229059 @default.
- W2770248520 hasRelatedWork W43382659 @default.
- W2770248520 hasRelatedWork W97790693 @default.
- W2770248520 isParatext "false" @default.
- W2770248520 isRetracted "false" @default.
- W2770248520 magId "2770248520" @default.
- W2770248520 workType "article" @default.