Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770293347> ?p ?o ?g. }
- W2770293347 endingPage "476" @default.
- W2770293347 startingPage "470" @default.
- W2770293347 abstract "The main purpose of this study is to experimentally investigate the use of ANNs (artificial neural networks) modelling to predict engine power, torque and exhaust emissions of a spark ignition engine which operates with gasoline and methanol blends. For the ANN modelling, the standard back-propagation algorithm was found to be the optimal choice for training the model. Afterwards, the performance of the ANN predictions was evaluated with the experimental results by comparing the predictions. Fuel type and engine speed have been used as the input layer, while engine torque, power, exhaust emissions, Tex and BSFC have also been used separately as the output layer. It was found that the ANN model is able to predict the engine performance, exhaust emissions, Tex and BSFC with a correlation coefficient of 0.9991887425, 0.9990868573, 0.9986749623, 0.9988624137, 0.9976761492, 0.9992943894 and 0.9978899033 for the Power, Torque, CO, CO2, HC, Tex and BSFC for testing data, respectively." @default.
- W2770293347 created "2017-12-04" @default.
- W2770293347 creator A5059780306 @default.
- W2770293347 creator A5063541430 @default.
- W2770293347 date "2017-12-13" @default.
- W2770293347 modified "2023-09-23" @default.
- W2770293347 title "Prediction of engine performance and exhaust emissions with different proportions of ethanol–gasoline blends using artificial neural networks" @default.
- W2770293347 cites W1969868418 @default.
- W2770293347 cites W1979203698 @default.
- W2770293347 cites W1981808091 @default.
- W2770293347 cites W1982235558 @default.
- W2770293347 cites W1983896184 @default.
- W2770293347 cites W1990211674 @default.
- W2770293347 cites W1990503634 @default.
- W2770293347 cites W1992674248 @default.
- W2770293347 cites W1994623961 @default.
- W2770293347 cites W1995514526 @default.
- W2770293347 cites W1996122683 @default.
- W2770293347 cites W1997321003 @default.
- W2770293347 cites W2020938291 @default.
- W2770293347 cites W2025133626 @default.
- W2770293347 cites W2026083729 @default.
- W2770293347 cites W2041025046 @default.
- W2770293347 cites W2049593688 @default.
- W2770293347 cites W2053810668 @default.
- W2770293347 cites W2078277492 @default.
- W2770293347 cites W2098535269 @default.
- W2770293347 cites W2101891011 @default.
- W2770293347 cites W2156205954 @default.
- W2770293347 cites W2165512128 @default.
- W2770293347 doi "https://doi.org/10.1080/01430750.2017.1410225" @default.
- W2770293347 hasPublicationYear "2017" @default.
- W2770293347 type Work @default.
- W2770293347 sameAs 2770293347 @default.
- W2770293347 citedByCount "11" @default.
- W2770293347 countsByYear W27702933472018 @default.
- W2770293347 countsByYear W27702933472019 @default.
- W2770293347 countsByYear W27702933472020 @default.
- W2770293347 countsByYear W27702933472021 @default.
- W2770293347 countsByYear W27702933472022 @default.
- W2770293347 countsByYear W27702933472023 @default.
- W2770293347 crossrefType "journal-article" @default.
- W2770293347 hasAuthorship W2770293347A5059780306 @default.
- W2770293347 hasAuthorship W2770293347A5063541430 @default.
- W2770293347 hasConcept C103697071 @default.
- W2770293347 hasConcept C119857082 @default.
- W2770293347 hasConcept C121332964 @default.
- W2770293347 hasConcept C127413603 @default.
- W2770293347 hasConcept C144171764 @default.
- W2770293347 hasConcept C163258240 @default.
- W2770293347 hasConcept C171146098 @default.
- W2770293347 hasConcept C2777703250 @default.
- W2770293347 hasConcept C2779139147 @default.
- W2770293347 hasConcept C2779876931 @default.
- W2770293347 hasConcept C38414747 @default.
- W2770293347 hasConcept C41008148 @default.
- W2770293347 hasConcept C45882903 @default.
- W2770293347 hasConcept C50644808 @default.
- W2770293347 hasConcept C511840579 @default.
- W2770293347 hasConcept C548081761 @default.
- W2770293347 hasConcept C73081478 @default.
- W2770293347 hasConcept C97355855 @default.
- W2770293347 hasConceptScore W2770293347C103697071 @default.
- W2770293347 hasConceptScore W2770293347C119857082 @default.
- W2770293347 hasConceptScore W2770293347C121332964 @default.
- W2770293347 hasConceptScore W2770293347C127413603 @default.
- W2770293347 hasConceptScore W2770293347C144171764 @default.
- W2770293347 hasConceptScore W2770293347C163258240 @default.
- W2770293347 hasConceptScore W2770293347C171146098 @default.
- W2770293347 hasConceptScore W2770293347C2777703250 @default.
- W2770293347 hasConceptScore W2770293347C2779139147 @default.
- W2770293347 hasConceptScore W2770293347C2779876931 @default.
- W2770293347 hasConceptScore W2770293347C38414747 @default.
- W2770293347 hasConceptScore W2770293347C41008148 @default.
- W2770293347 hasConceptScore W2770293347C45882903 @default.
- W2770293347 hasConceptScore W2770293347C50644808 @default.
- W2770293347 hasConceptScore W2770293347C511840579 @default.
- W2770293347 hasConceptScore W2770293347C548081761 @default.
- W2770293347 hasConceptScore W2770293347C73081478 @default.
- W2770293347 hasConceptScore W2770293347C97355855 @default.
- W2770293347 hasIssue "5" @default.
- W2770293347 hasLocation W27702933471 @default.
- W2770293347 hasOpenAccess W2770293347 @default.
- W2770293347 hasPrimaryLocation W27702933471 @default.
- W2770293347 hasRelatedWork W1597643717 @default.
- W2770293347 hasRelatedWork W188529301 @default.
- W2770293347 hasRelatedWork W2107301774 @default.
- W2770293347 hasRelatedWork W2127565830 @default.
- W2770293347 hasRelatedWork W2185763723 @default.
- W2770293347 hasRelatedWork W3169679625 @default.
- W2770293347 hasRelatedWork W4225711430 @default.
- W2770293347 hasRelatedWork W4310383526 @default.
- W2770293347 hasRelatedWork W2181855910 @default.
- W2770293347 hasRelatedWork W3143163286 @default.
- W2770293347 hasVolume "40" @default.
- W2770293347 isParatext "false" @default.
- W2770293347 isRetracted "false" @default.
- W2770293347 magId "2770293347" @default.