Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770294935> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2770294935 endingPage "86" @default.
- W2770294935 startingPage "58" @default.
- W2770294935 abstract "We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space–time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are “twisted” by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical “locally-geometric” U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are “locally non-geometric”." @default.
- W2770294935 created "2017-12-04" @default.
- W2770294935 creator A5008094358 @default.
- W2770294935 creator A5087892315 @default.
- W2770294935 date "2018-06-01" @default.
- W2770294935 modified "2023-09-25" @default.
- W2770294935 title "Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds" @default.
- W2770294935 cites W1505283666 @default.
- W2770294935 cites W1979205098 @default.
- W2770294935 cites W1983767686 @default.
- W2770294935 cites W2004383579 @default.
- W2770294935 cites W2006645641 @default.
- W2770294935 cites W2013969202 @default.
- W2770294935 cites W2023846287 @default.
- W2770294935 cites W2026737637 @default.
- W2770294935 cites W2027315201 @default.
- W2770294935 cites W2028088500 @default.
- W2770294935 cites W2041476095 @default.
- W2770294935 cites W2054019561 @default.
- W2770294935 cites W2063810115 @default.
- W2770294935 cites W2079493130 @default.
- W2770294935 cites W3099841093 @default.
- W2770294935 cites W3100243982 @default.
- W2770294935 doi "https://doi.org/10.1016/j.geomphys.2018.02.003" @default.
- W2770294935 hasPublicationYear "2018" @default.
- W2770294935 type Work @default.
- W2770294935 sameAs 2770294935 @default.
- W2770294935 citedByCount "5" @default.
- W2770294935 countsByYear W27702949352018 @default.
- W2770294935 countsByYear W27702949352019 @default.
- W2770294935 countsByYear W27702949352020 @default.
- W2770294935 countsByYear W27702949352021 @default.
- W2770294935 countsByYear W27702949352022 @default.
- W2770294935 crossrefType "journal-article" @default.
- W2770294935 hasAuthorship W2770294935A5008094358 @default.
- W2770294935 hasAuthorship W2770294935A5087892315 @default.
- W2770294935 hasBestOaLocation W27702949351 @default.
- W2770294935 hasConcept C121332964 @default.
- W2770294935 hasConcept C13355873 @default.
- W2770294935 hasConcept C134306372 @default.
- W2770294935 hasConcept C165818556 @default.
- W2770294935 hasConcept C166077713 @default.
- W2770294935 hasConcept C168619227 @default.
- W2770294935 hasConcept C181830111 @default.
- W2770294935 hasConcept C202444582 @default.
- W2770294935 hasConcept C2524010 @default.
- W2770294935 hasConcept C33332235 @default.
- W2770294935 hasConcept C33923547 @default.
- W2770294935 hasConcept C37914503 @default.
- W2770294935 hasConcept C520416788 @default.
- W2770294935 hasConcept C57691317 @default.
- W2770294935 hasConceptScore W2770294935C121332964 @default.
- W2770294935 hasConceptScore W2770294935C13355873 @default.
- W2770294935 hasConceptScore W2770294935C134306372 @default.
- W2770294935 hasConceptScore W2770294935C165818556 @default.
- W2770294935 hasConceptScore W2770294935C166077713 @default.
- W2770294935 hasConceptScore W2770294935C168619227 @default.
- W2770294935 hasConceptScore W2770294935C181830111 @default.
- W2770294935 hasConceptScore W2770294935C202444582 @default.
- W2770294935 hasConceptScore W2770294935C2524010 @default.
- W2770294935 hasConceptScore W2770294935C33332235 @default.
- W2770294935 hasConceptScore W2770294935C33923547 @default.
- W2770294935 hasConceptScore W2770294935C37914503 @default.
- W2770294935 hasConceptScore W2770294935C520416788 @default.
- W2770294935 hasConceptScore W2770294935C57691317 @default.
- W2770294935 hasLocation W27702949351 @default.
- W2770294935 hasLocation W27702949352 @default.
- W2770294935 hasOpenAccess W2770294935 @default.
- W2770294935 hasPrimaryLocation W27702949351 @default.
- W2770294935 hasRelatedWork W1837730608 @default.
- W2770294935 hasRelatedWork W1995623237 @default.
- W2770294935 hasRelatedWork W2066635351 @default.
- W2770294935 hasRelatedWork W2560565190 @default.
- W2770294935 hasRelatedWork W2782960241 @default.
- W2770294935 hasRelatedWork W2901496727 @default.
- W2770294935 hasRelatedWork W2918404240 @default.
- W2770294935 hasRelatedWork W2980231599 @default.
- W2770294935 hasRelatedWork W4226371494 @default.
- W2770294935 hasRelatedWork W4321767519 @default.
- W2770294935 hasVolume "128" @default.
- W2770294935 isParatext "false" @default.
- W2770294935 isRetracted "false" @default.
- W2770294935 magId "2770294935" @default.
- W2770294935 workType "article" @default.