Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770341796> ?p ?o ?g. }
- W2770341796 abstract "Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a ‘pattern recognition’ approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher’s discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven’s Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP) and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39 % for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90 to 7.81 Hz). Accuracy rates for MLP and Naïve Bayes classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy." @default.
- W2770341796 created "2017-12-04" @default.
- W2770341796 creator A5030016107 @default.
- W2770341796 creator A5039461848 @default.
- W2770341796 creator A5042665821 @default.
- W2770341796 creator A5045697627 @default.
- W2770341796 creator A5077623317 @default.
- W2770341796 date "2017-11-21" @default.
- W2770341796 modified "2023-10-16" @default.
- W2770341796 title "Classification of EEG Signals Based on Pattern Recognition Approach" @default.
- W2770341796 cites W132749457 @default.
- W2770341796 cites W1968918799 @default.
- W2770341796 cites W1977707084 @default.
- W2770341796 cites W1979415766 @default.
- W2770341796 cites W1988488214 @default.
- W2770341796 cites W1995165836 @default.
- W2770341796 cites W1996020380 @default.
- W2770341796 cites W1999511465 @default.
- W2770341796 cites W2022856590 @default.
- W2770341796 cites W2035291187 @default.
- W2770341796 cites W2059016985 @default.
- W2770341796 cites W2065454702 @default.
- W2770341796 cites W2072541188 @default.
- W2770341796 cites W2081895431 @default.
- W2770341796 cites W2098536759 @default.
- W2770341796 cites W2098994855 @default.
- W2770341796 cites W2101751541 @default.
- W2770341796 cites W2106706488 @default.
- W2770341796 cites W2120658493 @default.
- W2770341796 cites W2128728535 @default.
- W2770341796 cites W2140359534 @default.
- W2770341796 cites W2141440597 @default.
- W2770341796 cites W2154651302 @default.
- W2770341796 cites W2156849207 @default.
- W2770341796 cites W2158485497 @default.
- W2770341796 cites W2514061051 @default.
- W2770341796 cites W2752163195 @default.
- W2770341796 doi "https://doi.org/10.3389/fncom.2017.00103" @default.
- W2770341796 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5702353" @default.
- W2770341796 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29209190" @default.
- W2770341796 hasPublicationYear "2017" @default.
- W2770341796 type Work @default.
- W2770341796 sameAs 2770341796 @default.
- W2770341796 citedByCount "120" @default.
- W2770341796 countsByYear W27703417962018 @default.
- W2770341796 countsByYear W27703417962019 @default.
- W2770341796 countsByYear W27703417962020 @default.
- W2770341796 countsByYear W27703417962021 @default.
- W2770341796 countsByYear W27703417962022 @default.
- W2770341796 countsByYear W27703417962023 @default.
- W2770341796 crossrefType "journal-article" @default.
- W2770341796 hasAuthorship W2770341796A5030016107 @default.
- W2770341796 hasAuthorship W2770341796A5039461848 @default.
- W2770341796 hasAuthorship W2770341796A5042665821 @default.
- W2770341796 hasAuthorship W2770341796A5045697627 @default.
- W2770341796 hasAuthorship W2770341796A5077623317 @default.
- W2770341796 hasBestOaLocation W27703417961 @default.
- W2770341796 hasConcept C118552586 @default.
- W2770341796 hasConcept C12267149 @default.
- W2770341796 hasConcept C153180895 @default.
- W2770341796 hasConcept C154945302 @default.
- W2770341796 hasConcept C15744967 @default.
- W2770341796 hasConcept C179717631 @default.
- W2770341796 hasConcept C27438332 @default.
- W2770341796 hasConcept C28490314 @default.
- W2770341796 hasConcept C41008148 @default.
- W2770341796 hasConcept C47432892 @default.
- W2770341796 hasConcept C50644808 @default.
- W2770341796 hasConcept C52001869 @default.
- W2770341796 hasConcept C522805319 @default.
- W2770341796 hasConcept C52622490 @default.
- W2770341796 hasConcept C60908668 @default.
- W2770341796 hasConcept C69738355 @default.
- W2770341796 hasConceptScore W2770341796C118552586 @default.
- W2770341796 hasConceptScore W2770341796C12267149 @default.
- W2770341796 hasConceptScore W2770341796C153180895 @default.
- W2770341796 hasConceptScore W2770341796C154945302 @default.
- W2770341796 hasConceptScore W2770341796C15744967 @default.
- W2770341796 hasConceptScore W2770341796C179717631 @default.
- W2770341796 hasConceptScore W2770341796C27438332 @default.
- W2770341796 hasConceptScore W2770341796C28490314 @default.
- W2770341796 hasConceptScore W2770341796C41008148 @default.
- W2770341796 hasConceptScore W2770341796C47432892 @default.
- W2770341796 hasConceptScore W2770341796C50644808 @default.
- W2770341796 hasConceptScore W2770341796C52001869 @default.
- W2770341796 hasConceptScore W2770341796C522805319 @default.
- W2770341796 hasConceptScore W2770341796C52622490 @default.
- W2770341796 hasConceptScore W2770341796C60908668 @default.
- W2770341796 hasConceptScore W2770341796C69738355 @default.
- W2770341796 hasLocation W27703417961 @default.
- W2770341796 hasLocation W27703417962 @default.
- W2770341796 hasLocation W27703417963 @default.
- W2770341796 hasLocation W27703417964 @default.
- W2770341796 hasLocation W27703417965 @default.
- W2770341796 hasOpenAccess W2770341796 @default.
- W2770341796 hasPrimaryLocation W27703417961 @default.
- W2770341796 hasRelatedWork W1756315871 @default.
- W2770341796 hasRelatedWork W1966997960 @default.
- W2770341796 hasRelatedWork W1980511770 @default.
- W2770341796 hasRelatedWork W1984671715 @default.