Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770613401> ?p ?o ?g. }
- W2770613401 endingPage "851" @default.
- W2770613401 startingPage "808" @default.
- W2770613401 abstract "Selected situations in which a rigid sphere settles through a two-layer system obtained by superimposing two immiscible Newtonian fluids are studied using a combination of experiments and direct numerical simulations. By varying the viscosity of the two fluids and the sphere size and inertia, the flow conditions cover situations driven by capillary and viscous effects, in which case the sphere detaches slowly from the interface and may even rise for a period of time, as well as highly inertial cases where its motion is barely affected by the interface and essentially reacts to the change in the fluid viscosity and density. The evolutions of the sphere velocity, effective drag force and entrained volume of upper fluid are analysed. In most cases considered here, this entrained volume first takes the form of an axisymmetric tail which elongates as time proceeds until it pinches off at some point. We examine the post-pinch-off dynamics of this tail under various conditions. When the viscosity of the lower fluid is comparable or larger than that of the upper one, an end-pinching process initiated near the initial pinch-off position develops and propagates along the tail, gradually transforming it into a series of primary and satellite drops; the size of the former is correctly predicted by the linear stability theory. In contrast, when the lower fluid is much less viscous than the upper one, the tail recedes without pinching off again. During a certain stage of the process, the tip velocity keeps a constant value which is significantly underpredicted by the classical Taylor–Culick model. An improved theoretical prediction, shown to agree well with observations, is obtained by incorporating buoyancy effects resulting from the density difference between the two fluids. Spheres with large enough inertia settling in a low-viscosity lower fluid are found to exhibit specific tail dynamics prefiguring wake fragmentation. Indeed, an interfacial instability quickly develops near the top of the sphere, resulting in the formation of thin axisymmetric corollas surrounding the central part of the tail and propagating upwards. A simplified inviscid model considering the role of the boundary layer around the tail and including surface tension effects is found to predict correctly the characteristics of the observed instability which turns out to be governed by the Kelvin–Helmholtz mechanism." @default.
- W2770613401 created "2017-12-04" @default.
- W2770613401 creator A5002998291 @default.
- W2770613401 creator A5013186996 @default.
- W2770613401 date "2017-11-28" @default.
- W2770613401 modified "2023-09-30" @default.
- W2770613401 title "Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics" @default.
- W2770613401 cites W1587335451 @default.
- W2770613401 cites W1954262713 @default.
- W2770613401 cites W1963669969 @default.
- W2770613401 cites W1963700781 @default.
- W2770613401 cites W1965634509 @default.
- W2770613401 cites W1967503932 @default.
- W2770613401 cites W1968669279 @default.
- W2770613401 cites W1973552399 @default.
- W2770613401 cites W1974618792 @default.
- W2770613401 cites W1976029652 @default.
- W2770613401 cites W1977088899 @default.
- W2770613401 cites W1978200303 @default.
- W2770613401 cites W1979788891 @default.
- W2770613401 cites W1988212902 @default.
- W2770613401 cites W1989285505 @default.
- W2770613401 cites W1991659480 @default.
- W2770613401 cites W1997127658 @default.
- W2770613401 cites W2002483217 @default.
- W2770613401 cites W2002777511 @default.
- W2770613401 cites W2012642309 @default.
- W2770613401 cites W2013180531 @default.
- W2770613401 cites W2014512833 @default.
- W2770613401 cites W2014694862 @default.
- W2770613401 cites W2023665225 @default.
- W2770613401 cites W2024239712 @default.
- W2770613401 cites W2039474689 @default.
- W2770613401 cites W2041281453 @default.
- W2770613401 cites W2050815535 @default.
- W2770613401 cites W2052618244 @default.
- W2770613401 cites W2053220267 @default.
- W2770613401 cites W2054991008 @default.
- W2770613401 cites W2059826267 @default.
- W2770613401 cites W2062793736 @default.
- W2770613401 cites W2065069315 @default.
- W2770613401 cites W2066222663 @default.
- W2770613401 cites W2072893039 @default.
- W2770613401 cites W2074261604 @default.
- W2770613401 cites W2078572568 @default.
- W2770613401 cites W2080922987 @default.
- W2770613401 cites W2081797143 @default.
- W2770613401 cites W2084295053 @default.
- W2770613401 cites W2088149419 @default.
- W2770613401 cites W2088282293 @default.
- W2770613401 cites W2105885747 @default.
- W2770613401 cites W2106205755 @default.
- W2770613401 cites W2113662780 @default.
- W2770613401 cites W2114838040 @default.
- W2770613401 cites W2115312268 @default.
- W2770613401 cites W2115329099 @default.
- W2770613401 cites W2120204811 @default.
- W2770613401 cites W2123080125 @default.
- W2770613401 cites W2125925712 @default.
- W2770613401 cites W2129436614 @default.
- W2770613401 cites W2131833148 @default.
- W2770613401 cites W2140949555 @default.
- W2770613401 cites W2145851836 @default.
- W2770613401 cites W2151248200 @default.
- W2770613401 cites W2153863534 @default.
- W2770613401 cites W2153927649 @default.
- W2770613401 cites W2156426953 @default.
- W2770613401 cites W2156680457 @default.
- W2770613401 cites W2160500740 @default.
- W2770613401 cites W2168029303 @default.
- W2770613401 cites W2168288171 @default.
- W2770613401 cites W2168323577 @default.
- W2770613401 cites W2169001520 @default.
- W2770613401 cites W2169165309 @default.
- W2770613401 cites W2505960148 @default.
- W2770613401 cites W2770051438 @default.
- W2770613401 cites W3099356905 @default.
- W2770613401 cites W4241003221 @default.
- W2770613401 cites W4252297253 @default.
- W2770613401 doi "https://doi.org/10.1017/jfm.2017.748" @default.
- W2770613401 hasPublicationYear "2017" @default.
- W2770613401 type Work @default.
- W2770613401 sameAs 2770613401 @default.
- W2770613401 citedByCount "24" @default.
- W2770613401 countsByYear W27706134012017 @default.
- W2770613401 countsByYear W27706134012018 @default.
- W2770613401 countsByYear W27706134012019 @default.
- W2770613401 countsByYear W27706134012020 @default.
- W2770613401 countsByYear W27706134012021 @default.
- W2770613401 countsByYear W27706134012022 @default.
- W2770613401 countsByYear W27706134012023 @default.
- W2770613401 crossrefType "journal-article" @default.
- W2770613401 hasAuthorship W2770613401A5002998291 @default.
- W2770613401 hasAuthorship W2770613401A5013186996 @default.
- W2770613401 hasBestOaLocation W27706134012 @default.
- W2770613401 hasConcept C110407247 @default.
- W2770613401 hasConcept C121332964 @default.
- W2770613401 hasConcept C127172972 @default.