Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770616107> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2770616107 abstract "Scalability of predictive models is often realized by data subsampling. The generalization performance of models is not the only criterion one should take into account in the algorithm selection stage. For many real world applications, predictive models have to be scalable and their training time should be in balance with their performance. For many tasks it is reasonable to save computational resources and select an algorithm with slightly lower performance and significantly lower training time. In this contribution we made extensive benchmarks of predictive algorithms scalability and examined how they are capable to trade accuracy for lower training time. We demonstrate how one particular template (simple ensemble of fast sigmoidal regression models) outperforms state-of-the-art approaches on the Airline data set." @default.
- W2770616107 created "2017-12-04" @default.
- W2770616107 creator A5035026045 @default.
- W2770616107 creator A5039226465 @default.
- W2770616107 date "2017-11-22" @default.
- W2770616107 modified "2023-09-27" @default.
- W2770616107 title "On Scalability of Predictive Ensembles and Tradeoff Between Their Training Time and Accuracy" @default.
- W2770616107 cites W1494580925 @default.
- W2770616107 cites W1566951847 @default.
- W2770616107 cites W1918087345 @default.
- W2770616107 cites W197077999 @default.
- W2770616107 cites W2005136695 @default.
- W2770616107 cites W2015265162 @default.
- W2770616107 cites W2031173026 @default.
- W2770616107 cites W2087070363 @default.
- W2770616107 cites W2098154993 @default.
- W2770616107 cites W2102539288 @default.
- W2770616107 cites W2125621954 @default.
- W2770616107 cites W2130780296 @default.
- W2770616107 cites W2158144742 @default.
- W2770616107 cites W2173213060 @default.
- W2770616107 cites W2234598170 @default.
- W2770616107 cites W2345318549 @default.
- W2770616107 cites W2487087946 @default.
- W2770616107 cites W28412257 @default.
- W2770616107 cites W2912573428 @default.
- W2770616107 cites W2912744730 @default.
- W2770616107 cites W3106409770 @default.
- W2770616107 cites W4252731897 @default.
- W2770616107 doi "https://doi.org/10.1007/978-3-319-70581-1_18" @default.
- W2770616107 hasPublicationYear "2017" @default.
- W2770616107 type Work @default.
- W2770616107 sameAs 2770616107 @default.
- W2770616107 citedByCount "0" @default.
- W2770616107 crossrefType "book-chapter" @default.
- W2770616107 hasAuthorship W2770616107A5035026045 @default.
- W2770616107 hasAuthorship W2770616107A5039226465 @default.
- W2770616107 hasConcept C105795698 @default.
- W2770616107 hasConcept C119857082 @default.
- W2770616107 hasConcept C124101348 @default.
- W2770616107 hasConcept C134306372 @default.
- W2770616107 hasConcept C154945302 @default.
- W2770616107 hasConcept C177148314 @default.
- W2770616107 hasConcept C177264268 @default.
- W2770616107 hasConcept C199360897 @default.
- W2770616107 hasConcept C33923547 @default.
- W2770616107 hasConcept C41008148 @default.
- W2770616107 hasConcept C45804977 @default.
- W2770616107 hasConcept C48044578 @default.
- W2770616107 hasConcept C51632099 @default.
- W2770616107 hasConcept C77088390 @default.
- W2770616107 hasConcept C83209312 @default.
- W2770616107 hasConcept C83546350 @default.
- W2770616107 hasConceptScore W2770616107C105795698 @default.
- W2770616107 hasConceptScore W2770616107C119857082 @default.
- W2770616107 hasConceptScore W2770616107C124101348 @default.
- W2770616107 hasConceptScore W2770616107C134306372 @default.
- W2770616107 hasConceptScore W2770616107C154945302 @default.
- W2770616107 hasConceptScore W2770616107C177148314 @default.
- W2770616107 hasConceptScore W2770616107C177264268 @default.
- W2770616107 hasConceptScore W2770616107C199360897 @default.
- W2770616107 hasConceptScore W2770616107C33923547 @default.
- W2770616107 hasConceptScore W2770616107C41008148 @default.
- W2770616107 hasConceptScore W2770616107C45804977 @default.
- W2770616107 hasConceptScore W2770616107C48044578 @default.
- W2770616107 hasConceptScore W2770616107C51632099 @default.
- W2770616107 hasConceptScore W2770616107C77088390 @default.
- W2770616107 hasConceptScore W2770616107C83209312 @default.
- W2770616107 hasConceptScore W2770616107C83546350 @default.
- W2770616107 hasLocation W27706161071 @default.
- W2770616107 hasOpenAccess W2770616107 @default.
- W2770616107 hasPrimaryLocation W27706161071 @default.
- W2770616107 hasRelatedWork W1257569579 @default.
- W2770616107 hasRelatedWork W1591851573 @default.
- W2770616107 hasRelatedWork W2182259890 @default.
- W2770616107 hasRelatedWork W2339855950 @default.
- W2770616107 hasRelatedWork W2407452250 @default.
- W2770616107 hasRelatedWork W2567318120 @default.
- W2770616107 hasRelatedWork W2585311025 @default.
- W2770616107 hasRelatedWork W2767274188 @default.
- W2770616107 hasRelatedWork W2795986451 @default.
- W2770616107 hasRelatedWork W2896863725 @default.
- W2770616107 hasRelatedWork W2981924372 @default.
- W2770616107 hasRelatedWork W3004511681 @default.
- W2770616107 hasRelatedWork W3034292689 @default.
- W2770616107 hasRelatedWork W3098430511 @default.
- W2770616107 hasRelatedWork W3127726565 @default.
- W2770616107 hasRelatedWork W3167556547 @default.
- W2770616107 hasRelatedWork W3182057971 @default.
- W2770616107 hasRelatedWork W3187828479 @default.
- W2770616107 hasRelatedWork W3199945680 @default.
- W2770616107 hasRelatedWork W3211734201 @default.
- W2770616107 isParatext "false" @default.
- W2770616107 isRetracted "false" @default.
- W2770616107 magId "2770616107" @default.
- W2770616107 workType "book-chapter" @default.