Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770627596> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2770627596 endingPage "241" @default.
- W2770627596 startingPage "241" @default.
- W2770627596 abstract "End-stage renal disease (ESRD), which is primarily a consequence of diabetes mellitus, shows an exemplary health disparity between African American and Caucasian patients in the United States. Because diabetic chronic kidney disease (CKD) patients of these two groups show differences in their medical problems, the markers leading to ESRD are also expected to differ. The purpose of this study was, therefore, to compare their medical complications at various levels of kidney function and to identify markers that can be used to predict ESRD.The data of type 2 diabetic patients was obtained from the 2012 Cerner database, which totaled 1,038,499 records. The data was then filtered to include only African American and Caucasian outpatients with estimated glomerular filtration rates (eGFR), leaving 4,623 records. A priori machine learning was used to discover frequently appearing medical problems within the filtered data. CKD is defined as abnormalities of kidney structure, present for >3 months.This study found that African Americans have much higher rates of CKD-related medical problems than Caucasians for all five stages, and prominent markers leading to ESRD were discovered only for the African American group. These markers are high glucose, high systolic blood pressure (BP), obesity, alcohol/drug use, and low hematocrit. Additionally, the roles of systolic BP and diastolic BP vary depending on the CKD stage.This research discovered frequently appearing medical problems across five stages of CKD and further showed that many of the markers reported in previous studies are more applicable to African American patients than Caucasian patients." @default.
- W2770627596 created "2017-12-04" @default.
- W2770627596 creator A5049563716 @default.
- W2770627596 creator A5065325837 @default.
- W2770627596 creator A5074625770 @default.
- W2770627596 date "2017-01-01" @default.
- W2770627596 modified "2023-09-26" @default.
- W2770627596 title "Machine Learning to Compare Frequent Medical Problems of African American and Caucasian Diabetic Kidney Patients" @default.
- W2770627596 cites W1481454668 @default.
- W2770627596 cites W1554147821 @default.
- W2770627596 cites W1788404763 @default.
- W2770627596 cites W1924953247 @default.
- W2770627596 cites W1968644043 @default.
- W2770627596 cites W1984252269 @default.
- W2770627596 cites W2021988356 @default.
- W2770627596 cites W2046832756 @default.
- W2770627596 cites W2109256164 @default.
- W2770627596 cites W2115781064 @default.
- W2770627596 cites W2142679015 @default.
- W2770627596 cites W2166534732 @default.
- W2770627596 cites W2324374510 @default.
- W2770627596 cites W2343191417 @default.
- W2770627596 cites W2509136010 @default.
- W2770627596 cites W2564311692 @default.
- W2770627596 cites W2591685297 @default.
- W2770627596 cites W2604378356 @default.
- W2770627596 cites W2605416269 @default.
- W2770627596 cites W2618219573 @default.
- W2770627596 cites W3147775007 @default.
- W2770627596 doi "https://doi.org/10.4258/hir.2017.23.4.241" @default.
- W2770627596 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5688022" @default.
- W2770627596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29181232" @default.
- W2770627596 hasPublicationYear "2017" @default.
- W2770627596 type Work @default.
- W2770627596 sameAs 2770627596 @default.
- W2770627596 citedByCount "3" @default.
- W2770627596 countsByYear W27706275962018 @default.
- W2770627596 countsByYear W27706275962019 @default.
- W2770627596 countsByYear W27706275962021 @default.
- W2770627596 crossrefType "journal-article" @default.
- W2770627596 hasAuthorship W2770627596A5049563716 @default.
- W2770627596 hasAuthorship W2770627596A5065325837 @default.
- W2770627596 hasAuthorship W2770627596A5074625770 @default.
- W2770627596 hasBestOaLocation W27706275961 @default.
- W2770627596 hasConcept C126322002 @default.
- W2770627596 hasConcept C134018914 @default.
- W2770627596 hasConcept C159641895 @default.
- W2770627596 hasConcept C177713679 @default.
- W2770627596 hasConcept C195910791 @default.
- W2770627596 hasConcept C2778653478 @default.
- W2770627596 hasConcept C2779134260 @default.
- W2770627596 hasConcept C555293320 @default.
- W2770627596 hasConcept C71924100 @default.
- W2770627596 hasConcept C84393581 @default.
- W2770627596 hasConceptScore W2770627596C126322002 @default.
- W2770627596 hasConceptScore W2770627596C134018914 @default.
- W2770627596 hasConceptScore W2770627596C159641895 @default.
- W2770627596 hasConceptScore W2770627596C177713679 @default.
- W2770627596 hasConceptScore W2770627596C195910791 @default.
- W2770627596 hasConceptScore W2770627596C2778653478 @default.
- W2770627596 hasConceptScore W2770627596C2779134260 @default.
- W2770627596 hasConceptScore W2770627596C555293320 @default.
- W2770627596 hasConceptScore W2770627596C71924100 @default.
- W2770627596 hasConceptScore W2770627596C84393581 @default.
- W2770627596 hasIssue "4" @default.
- W2770627596 hasLocation W27706275961 @default.
- W2770627596 hasLocation W27706275962 @default.
- W2770627596 hasLocation W27706275963 @default.
- W2770627596 hasLocation W27706275964 @default.
- W2770627596 hasOpenAccess W2770627596 @default.
- W2770627596 hasPrimaryLocation W27706275961 @default.
- W2770627596 hasVolume "23" @default.
- W2770627596 isParatext "false" @default.
- W2770627596 isRetracted "false" @default.
- W2770627596 magId "2770627596" @default.
- W2770627596 workType "article" @default.