Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770629067> ?p ?o ?g. }
- W2770629067 abstract "Abstract Children of severe hand, foot, and mouth disease (HFMD) often present with same clinical features as those of mild HFMD during the early stage, yet later deteriorate rapidly with a fulminant disease course. Our goal was to: (1) develop a machine learning system to automatically identify cases with high risk of severe HFMD at the time of admission; (2) compare the effectiveness of the new system with the existing risk scoring system. Data on 2,532 HFMD children admitted between March 2012 and July 2015, were collected retrospectively from a medical center in China. By applying a holdout strategy and a 10-fold cross validation method, we developed four models with the random forest algorithm using different variable sets. The prediction system HFMD-RF based on the model of 16 variables from both the structured and unstructured data, achieved 0.824 sensitivity, 0.931 specificity, 0.916 accuracy, and 0.916 area under the curve in the independent test set. Most remarkably, HFMD-RF offers significant gains with respect to the commonly used pediatric critical illness score in clinical practice. As all the selected risk factors can be easily obtained, HFMD-RF might prove to be useful for reductions in mortality and complications of severe HFMD." @default.
- W2770629067 created "2017-12-04" @default.
- W2770629067 creator A5013173455 @default.
- W2770629067 creator A5016815290 @default.
- W2770629067 creator A5021785323 @default.
- W2770629067 creator A5034416132 @default.
- W2770629067 creator A5039731099 @default.
- W2770629067 creator A5041388103 @default.
- W2770629067 creator A5047582961 @default.
- W2770629067 creator A5049169444 @default.
- W2770629067 creator A5059446724 @default.
- W2770629067 creator A5061450079 @default.
- W2770629067 creator A5067069882 @default.
- W2770629067 creator A5067399916 @default.
- W2770629067 creator A5084637725 @default.
- W2770629067 date "2017-11-27" @default.
- W2770629067 modified "2023-09-27" @default.
- W2770629067 title "Developing a Machine Learning System for Identification of Severe Hand, Foot, and Mouth Disease from Electronic Medical Record Data" @default.
- W2770629067 cites W1520812622 @default.
- W2770629067 cites W1757806251 @default.
- W2770629067 cites W1866881459 @default.
- W2770629067 cites W1890275775 @default.
- W2770629067 cites W1943063538 @default.
- W2770629067 cites W1968114652 @default.
- W2770629067 cites W1969970904 @default.
- W2770629067 cites W1978128154 @default.
- W2770629067 cites W1982685794 @default.
- W2770629067 cites W1986896326 @default.
- W2770629067 cites W1988195734 @default.
- W2770629067 cites W2014449894 @default.
- W2770629067 cites W2016455323 @default.
- W2770629067 cites W2023505297 @default.
- W2770629067 cites W2023638304 @default.
- W2770629067 cites W2060288897 @default.
- W2770629067 cites W2078802134 @default.
- W2770629067 cites W2087140664 @default.
- W2770629067 cites W2096863518 @default.
- W2770629067 cites W2100510380 @default.
- W2770629067 cites W2104167780 @default.
- W2770629067 cites W2107753825 @default.
- W2770629067 cites W2108712394 @default.
- W2770629067 cites W2119680439 @default.
- W2770629067 cites W2124063640 @default.
- W2770629067 cites W2134375544 @default.
- W2770629067 cites W2139727003 @default.
- W2770629067 cites W2148204850 @default.
- W2770629067 cites W2150577353 @default.
- W2770629067 cites W2263602591 @default.
- W2770629067 cites W2418017134 @default.
- W2770629067 cites W2528922468 @default.
- W2770629067 cites W2597330433 @default.
- W2770629067 cites W2613494553 @default.
- W2770629067 cites W2621955675 @default.
- W2770629067 cites W2735745392 @default.
- W2770629067 cites W2739924525 @default.
- W2770629067 cites W2911964244 @default.
- W2770629067 cites W4249835592 @default.
- W2770629067 doi "https://doi.org/10.1038/s41598-017-16521-z" @default.
- W2770629067 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5703994" @default.
- W2770629067 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29180702" @default.
- W2770629067 hasPublicationYear "2017" @default.
- W2770629067 type Work @default.
- W2770629067 sameAs 2770629067 @default.
- W2770629067 citedByCount "13" @default.
- W2770629067 countsByYear W27706290672018 @default.
- W2770629067 countsByYear W27706290672019 @default.
- W2770629067 countsByYear W27706290672020 @default.
- W2770629067 countsByYear W27706290672021 @default.
- W2770629067 countsByYear W27706290672022 @default.
- W2770629067 crossrefType "journal-article" @default.
- W2770629067 hasAuthorship W2770629067A5013173455 @default.
- W2770629067 hasAuthorship W2770629067A5016815290 @default.
- W2770629067 hasAuthorship W2770629067A5021785323 @default.
- W2770629067 hasAuthorship W2770629067A5034416132 @default.
- W2770629067 hasAuthorship W2770629067A5039731099 @default.
- W2770629067 hasAuthorship W2770629067A5041388103 @default.
- W2770629067 hasAuthorship W2770629067A5047582961 @default.
- W2770629067 hasAuthorship W2770629067A5049169444 @default.
- W2770629067 hasAuthorship W2770629067A5059446724 @default.
- W2770629067 hasAuthorship W2770629067A5061450079 @default.
- W2770629067 hasAuthorship W2770629067A5067069882 @default.
- W2770629067 hasAuthorship W2770629067A5067399916 @default.
- W2770629067 hasAuthorship W2770629067A5084637725 @default.
- W2770629067 hasBestOaLocation W27706290671 @default.
- W2770629067 hasConcept C115076146 @default.
- W2770629067 hasConcept C116675565 @default.
- W2770629067 hasConcept C119857082 @default.
- W2770629067 hasConcept C126322002 @default.
- W2770629067 hasConcept C138885662 @default.
- W2770629067 hasConcept C141071460 @default.
- W2770629067 hasConcept C142724271 @default.
- W2770629067 hasConcept C154945302 @default.
- W2770629067 hasConcept C169258074 @default.
- W2770629067 hasConcept C187212893 @default.
- W2770629067 hasConcept C195910791 @default.
- W2770629067 hasConcept C2777158596 @default.
- W2770629067 hasConcept C2779070877 @default.
- W2770629067 hasConcept C2779134260 @default.
- W2770629067 hasConcept C2781107259 @default.
- W2770629067 hasConcept C41008148 @default.