Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770636204> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2770636204 endingPage "160" @default.
- W2770636204 startingPage "149" @default.
- W2770636204 abstract "In this research, two new empirical equations based on Artificial Neural Network (ANN) were developed to determine the new void fraction in two-phase flow inside helical vertical coils with water as work fluid. The first model included vapor fraction (xg), density ratio ρgρl, viscosity ratio μlμg, and curvature ratio dD, as input variables, and 2 neurons in the hidden layer to predict satisfactorily the void fraction. In order to simplify the model, a second model of ANN was proposed without curvature ratio. The best architecture to the second model, with 3 input variables, was also with 2 neurons in the hidden layer. The coefficients of determination were R2 > 0.9 to both models. The ANN models of void fraction satisfied the interval condition of 0–1. Therefore, both models have been considered to be satisfactory for predicting the behavior of void fraction of a two-phase flow. To validate these new void fraction equations, three different helical heat exchangers described in previous works reported, were applied in two ways: first, experimental and simulated heat fluxes were compared using steady state test data from two helical double-pipe vertical evaporators integrated into two absorption heat transformers; second, experimental and simulated heat fluxes were also compared in an innovative design prototype full-scale helically coil steam generator in which, numerical results for pressure along the tube reveal a better way to represent the two-phase flow. The second evaluation also provided evidence on the successful extrapolation of simple ANN equations of void fraction in function of dimensionless numbers. The analyses of the contribution of input variables in the ANN model showed that the curvature ratio could not impact the simulative accuracy of void fraction under the experimental conditions worked." @default.
- W2770636204 created "2017-12-04" @default.
- W2770636204 creator A5001974765 @default.
- W2770636204 creator A5038923942 @default.
- W2770636204 creator A5050650026 @default.
- W2770636204 creator A5057575345 @default.
- W2770636204 creator A5065312690 @default.
- W2770636204 creator A5073391985 @default.
- W2770636204 date "2018-02-01" @default.
- W2770636204 modified "2023-10-01" @default.
- W2770636204 title "New void fraction equations for two-phase flow in helical heat exchangers using artificial neural networks" @default.
- W2770636204 cites W1969540044 @default.
- W2770636204 cites W1972257918 @default.
- W2770636204 cites W1977432038 @default.
- W2770636204 cites W1977596813 @default.
- W2770636204 cites W1983771841 @default.
- W2770636204 cites W1988054152 @default.
- W2770636204 cites W1991670290 @default.
- W2770636204 cites W1994973517 @default.
- W2770636204 cites W1999653191 @default.
- W2770636204 cites W2007336590 @default.
- W2770636204 cites W2015663673 @default.
- W2770636204 cites W2018428203 @default.
- W2770636204 cites W2026183898 @default.
- W2770636204 cites W2034839046 @default.
- W2770636204 cites W2041606062 @default.
- W2770636204 cites W2063545850 @default.
- W2770636204 cites W2069960074 @default.
- W2770636204 cites W2090064789 @default.
- W2770636204 cites W2091724480 @default.
- W2770636204 cites W2170422950 @default.
- W2770636204 cites W2513045195 @default.
- W2770636204 cites W79134773 @default.
- W2770636204 doi "https://doi.org/10.1016/j.applthermaleng.2017.10.139" @default.
- W2770636204 hasPublicationYear "2018" @default.
- W2770636204 type Work @default.
- W2770636204 sameAs 2770636204 @default.
- W2770636204 citedByCount "21" @default.
- W2770636204 countsByYear W27706362042018 @default.
- W2770636204 countsByYear W27706362042019 @default.
- W2770636204 countsByYear W27706362042020 @default.
- W2770636204 countsByYear W27706362042021 @default.
- W2770636204 countsByYear W27706362042022 @default.
- W2770636204 countsByYear W27706362042023 @default.
- W2770636204 crossrefType "journal-article" @default.
- W2770636204 hasAuthorship W2770636204A5001974765 @default.
- W2770636204 hasAuthorship W2770636204A5038923942 @default.
- W2770636204 hasAuthorship W2770636204A5050650026 @default.
- W2770636204 hasAuthorship W2770636204A5057575345 @default.
- W2770636204 hasAuthorship W2770636204A5065312690 @default.
- W2770636204 hasAuthorship W2770636204A5073391985 @default.
- W2770636204 hasConcept C107706546 @default.
- W2770636204 hasConcept C114088122 @default.
- W2770636204 hasConcept C121332964 @default.
- W2770636204 hasConcept C132459708 @default.
- W2770636204 hasConcept C134306372 @default.
- W2770636204 hasConcept C159985019 @default.
- W2770636204 hasConcept C192562407 @default.
- W2770636204 hasConcept C195065555 @default.
- W2770636204 hasConcept C2524010 @default.
- W2770636204 hasConcept C33923547 @default.
- W2770636204 hasConcept C57879066 @default.
- W2770636204 hasConcept C6648577 @default.
- W2770636204 hasConcept C97355855 @default.
- W2770636204 hasConceptScore W2770636204C107706546 @default.
- W2770636204 hasConceptScore W2770636204C114088122 @default.
- W2770636204 hasConceptScore W2770636204C121332964 @default.
- W2770636204 hasConceptScore W2770636204C132459708 @default.
- W2770636204 hasConceptScore W2770636204C134306372 @default.
- W2770636204 hasConceptScore W2770636204C159985019 @default.
- W2770636204 hasConceptScore W2770636204C192562407 @default.
- W2770636204 hasConceptScore W2770636204C195065555 @default.
- W2770636204 hasConceptScore W2770636204C2524010 @default.
- W2770636204 hasConceptScore W2770636204C33923547 @default.
- W2770636204 hasConceptScore W2770636204C57879066 @default.
- W2770636204 hasConceptScore W2770636204C6648577 @default.
- W2770636204 hasConceptScore W2770636204C97355855 @default.
- W2770636204 hasLocation W27706362041 @default.
- W2770636204 hasOpenAccess W2770636204 @default.
- W2770636204 hasPrimaryLocation W27706362041 @default.
- W2770636204 hasRelatedWork W1966039933 @default.
- W2770636204 hasRelatedWork W1977509873 @default.
- W2770636204 hasRelatedWork W2075580692 @default.
- W2770636204 hasRelatedWork W2105594625 @default.
- W2770636204 hasRelatedWork W2121036907 @default.
- W2770636204 hasRelatedWork W2123750560 @default.
- W2770636204 hasRelatedWork W2367316802 @default.
- W2770636204 hasRelatedWork W2579147702 @default.
- W2770636204 hasRelatedWork W4283457227 @default.
- W2770636204 hasRelatedWork W4283576829 @default.
- W2770636204 hasVolume "130" @default.
- W2770636204 isParatext "false" @default.
- W2770636204 isRetracted "false" @default.
- W2770636204 magId "2770636204" @default.
- W2770636204 workType "article" @default.