Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770670552> ?p ?o ?g. }
- W2770670552 endingPage "112" @default.
- W2770670552 startingPage "97" @default.
- W2770670552 abstract "Mammography is the gold standard screening technique in breast cancer, but it has some limitations for women with dense breasts. In such cases, sonography is usually recommended as an additional imaging technique. A traditional sonogram produces a two-dimensional (2D) visualization of the breast and is highly operator dependent. Automated breast ultrasound (ABUS) has also been proposed to produce a full 3D scan of the breast automatically with reduced operator dependency, facilitating double reading and comparison with past exams. When using ABUS, lesion segmentation and tracking changes over time are challenging tasks, as the three-dimensional (3D) nature of the images makes the analysis difficult and tedious for radiologists. The goal of this work is to develop a semi-automatic framework for breast lesion segmentation in ABUS volumes which is based on the Watershed algorithm. The effect of different de-noising methods on segmentation is studied showing a significant impact (p<0.05) on the performance using a dataset of 28 temporal pairs resulting in a total of 56 ABUS volumes. The volumetric analysis is also used to evaluate the performance of the developed framework. A mean Dice Similarity Coefficient of 0.69±0.11 with a mean False Positive ratio 0.35±0.14 has been obtained. The Pearson correlation coefficient between the segmented volumes and the corresponding ground truth volumes is r2=0.960 (p=0.05). Similar analysis, performed on 28 temporal (prior and current) pairs, resulted in a good correlation coefficient r2=0.967 (p<0.05) for prior and r2=0.956 (p<0.05) for current cases. The developed framework showed prospects to help radiologists to perform an assessment of ABUS lesion volumes, as well as to quantify volumetric changes during lesions diagnosis and follow-up." @default.
- W2770670552 created "2017-12-04" @default.
- W2770670552 creator A5013828170 @default.
- W2770670552 creator A5022913430 @default.
- W2770670552 creator A5060317108 @default.
- W2770670552 creator A5064897887 @default.
- W2770670552 creator A5074533738 @default.
- W2770670552 creator A5085913405 @default.
- W2770670552 date "2017-11-28" @default.
- W2770670552 modified "2023-09-27" @default.
- W2770670552 title "Lesion Segmentation in Automated 3D Breast Ultrasound: Volumetric Analysis" @default.
- W2770670552 cites W1502748512 @default.
- W2770670552 cites W1970603291 @default.
- W2770670552 cites W1979846791 @default.
- W2770670552 cites W1987558480 @default.
- W2770670552 cites W1987869189 @default.
- W2770670552 cites W1988264599 @default.
- W2770670552 cites W2012775467 @default.
- W2770670552 cites W2022122681 @default.
- W2770670552 cites W2026174647 @default.
- W2770670552 cites W2033144186 @default.
- W2770670552 cites W2039010280 @default.
- W2770670552 cites W2041277244 @default.
- W2770670552 cites W2052282007 @default.
- W2770670552 cites W2075502466 @default.
- W2770670552 cites W2100159406 @default.
- W2770670552 cites W2101608218 @default.
- W2770670552 cites W2119077877 @default.
- W2770670552 cites W2125449863 @default.
- W2770670552 cites W2125676807 @default.
- W2770670552 cites W2127890285 @default.
- W2770670552 cites W2139248078 @default.
- W2770670552 cites W2144776464 @default.
- W2770670552 cites W2150134853 @default.
- W2770670552 cites W2153172662 @default.
- W2770670552 cites W2155919893 @default.
- W2770670552 cites W2157687887 @default.
- W2770670552 cites W2160408484 @default.
- W2770670552 cites W2287957978 @default.
- W2770670552 cites W2416559807 @default.
- W2770670552 cites W2513585288 @default.
- W2770670552 doi "https://doi.org/10.1177/0161734617737733" @default.
- W2770670552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29182056" @default.
- W2770670552 hasPublicationYear "2017" @default.
- W2770670552 type Work @default.
- W2770670552 sameAs 2770670552 @default.
- W2770670552 citedByCount "18" @default.
- W2770670552 countsByYear W27706705522019 @default.
- W2770670552 countsByYear W27706705522020 @default.
- W2770670552 countsByYear W27706705522021 @default.
- W2770670552 countsByYear W27706705522022 @default.
- W2770670552 crossrefType "journal-article" @default.
- W2770670552 hasAuthorship W2770670552A5013828170 @default.
- W2770670552 hasAuthorship W2770670552A5022913430 @default.
- W2770670552 hasAuthorship W2770670552A5060317108 @default.
- W2770670552 hasAuthorship W2770670552A5064897887 @default.
- W2770670552 hasAuthorship W2770670552A5074533738 @default.
- W2770670552 hasAuthorship W2770670552A5085913405 @default.
- W2770670552 hasConcept C119857082 @default.
- W2770670552 hasConcept C121608353 @default.
- W2770670552 hasConcept C124504099 @default.
- W2770670552 hasConcept C126322002 @default.
- W2770670552 hasConcept C126838900 @default.
- W2770670552 hasConcept C143753070 @default.
- W2770670552 hasConcept C146849305 @default.
- W2770670552 hasConcept C153180895 @default.
- W2770670552 hasConcept C154945302 @default.
- W2770670552 hasConcept C163892561 @default.
- W2770670552 hasConcept C2777423100 @default.
- W2770670552 hasConcept C2777432617 @default.
- W2770670552 hasConcept C2780092901 @default.
- W2770670552 hasConcept C2780170424 @default.
- W2770670552 hasConcept C2780472235 @default.
- W2770670552 hasConcept C2989005 @default.
- W2770670552 hasConcept C36464697 @default.
- W2770670552 hasConcept C41008148 @default.
- W2770670552 hasConcept C530470458 @default.
- W2770670552 hasConcept C71924100 @default.
- W2770670552 hasConcept C89600930 @default.
- W2770670552 hasConceptScore W2770670552C119857082 @default.
- W2770670552 hasConceptScore W2770670552C121608353 @default.
- W2770670552 hasConceptScore W2770670552C124504099 @default.
- W2770670552 hasConceptScore W2770670552C126322002 @default.
- W2770670552 hasConceptScore W2770670552C126838900 @default.
- W2770670552 hasConceptScore W2770670552C143753070 @default.
- W2770670552 hasConceptScore W2770670552C146849305 @default.
- W2770670552 hasConceptScore W2770670552C153180895 @default.
- W2770670552 hasConceptScore W2770670552C154945302 @default.
- W2770670552 hasConceptScore W2770670552C163892561 @default.
- W2770670552 hasConceptScore W2770670552C2777423100 @default.
- W2770670552 hasConceptScore W2770670552C2777432617 @default.
- W2770670552 hasConceptScore W2770670552C2780092901 @default.
- W2770670552 hasConceptScore W2770670552C2780170424 @default.
- W2770670552 hasConceptScore W2770670552C2780472235 @default.
- W2770670552 hasConceptScore W2770670552C2989005 @default.
- W2770670552 hasConceptScore W2770670552C36464697 @default.
- W2770670552 hasConceptScore W2770670552C41008148 @default.
- W2770670552 hasConceptScore W2770670552C530470458 @default.