Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770675377> ?p ?o ?g. }
- W2770675377 endingPage "1335" @default.
- W2770675377 startingPage "1329" @default.
- W2770675377 abstract "Abstract Motivation With the development of high-throughput techniques, RNA-sequencing (RNA-seq) is becoming increasingly popular as an alternative for gene expression analysis, such as RNAs profiling and classification. Identifying which type of diseases a new patient belongs to with RNA-seq data has been recognized as a vital problem in medical research. As RNA-seq data are discrete, statistical methods developed for classifying microarray data cannot be readily applied for RNA-seq data classification. Witten proposed a Poisson linear discriminant analysis (PLDA) to classify the RNA-seq data in 2011. Note, however, that the count datasets are frequently characterized by excess zeros in real RNA-seq or microRNA sequence data (i.e. when the sequence depth is not enough or small RNAs with the length of 18–30 nucleotides). Therefore, it is desired to develop a new model to analyze RNA-seq data with an excess of zeros. Results In this paper, we propose a Zero-Inflated Poisson Logistic Discriminant Analysis (ZIPLDA) for RNA-seq data with an excess of zeros. The new method assumes that the data are from a mixture of two distributions: one is a point mass at zero, and the other follows a Poisson distribution. We then consider a logistic relation between the probability of observing zeros and the mean of the genes and the sequencing depth in the model. Simulation studies show that the proposed method performs better than, or at least as well as, the existing methods in a wide range of settings. Two real datasets including a breast cancer RNA-seq dataset and a microRNA-seq dataset are also analyzed, and they coincide with the simulation results that our proposed method outperforms the existing competitors. Availability and implementation The software is available at http://www.math.hkbu.edu.hk/∼tongt. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2770675377 created "2017-12-04" @default.
- W2770675377 creator A5002431770 @default.
- W2770675377 creator A5030367905 @default.
- W2770675377 creator A5032412994 @default.
- W2770675377 creator A5035206167 @default.
- W2770675377 date "2017-11-27" @default.
- W2770675377 modified "2023-10-16" @default.
- W2770675377 title "Classifying next-generation sequencing data using a zero-inflated Poisson model" @default.
- W2770675377 cites W153790201 @default.
- W2770675377 cites W1607335700 @default.
- W2770675377 cites W1965962538 @default.
- W2770675377 cites W1966701961 @default.
- W2770675377 cites W1981509058 @default.
- W2770675377 cites W2015858554 @default.
- W2770675377 cites W2030572260 @default.
- W2770675377 cites W2103903744 @default.
- W2770675377 cites W2107018762 @default.
- W2770675377 cites W2112074723 @default.
- W2770675377 cites W2114104545 @default.
- W2770675377 cites W2117812871 @default.
- W2770675377 cites W2119634512 @default.
- W2770675377 cites W2121211805 @default.
- W2770675377 cites W2126547130 @default.
- W2770675377 cites W2137839234 @default.
- W2770675377 cites W2141425631 @default.
- W2770675377 cites W2146026567 @default.
- W2770675377 cites W2152239989 @default.
- W2770675377 cites W2156631105 @default.
- W2770675377 cites W2165909549 @default.
- W2770675377 cites W2179438025 @default.
- W2770675377 cites W2309347697 @default.
- W2770675377 cites W2474290073 @default.
- W2770675377 cites W2567841878 @default.
- W2770675377 cites W2609843459 @default.
- W2770675377 cites W3103302162 @default.
- W2770675377 cites W3121454289 @default.
- W2770675377 cites W4376453824 @default.
- W2770675377 cites W56029280 @default.
- W2770675377 doi "https://doi.org/10.1093/bioinformatics/btx768" @default.
- W2770675377 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29186294" @default.
- W2770675377 hasPublicationYear "2017" @default.
- W2770675377 type Work @default.
- W2770675377 sameAs 2770675377 @default.
- W2770675377 citedByCount "9" @default.
- W2770675377 countsByYear W27706753772018 @default.
- W2770675377 countsByYear W27706753772019 @default.
- W2770675377 countsByYear W27706753772020 @default.
- W2770675377 countsByYear W27706753772021 @default.
- W2770675377 countsByYear W27706753772022 @default.
- W2770675377 crossrefType "journal-article" @default.
- W2770675377 hasAuthorship W2770675377A5002431770 @default.
- W2770675377 hasAuthorship W2770675377A5030367905 @default.
- W2770675377 hasAuthorship W2770675377A5032412994 @default.
- W2770675377 hasAuthorship W2770675377A5035206167 @default.
- W2770675377 hasBestOaLocation W27706753771 @default.
- W2770675377 hasConcept C100906024 @default.
- W2770675377 hasConcept C104317684 @default.
- W2770675377 hasConcept C105795698 @default.
- W2770675377 hasConcept C11413529 @default.
- W2770675377 hasConcept C124101348 @default.
- W2770675377 hasConcept C144024400 @default.
- W2770675377 hasConcept C149923435 @default.
- W2770675377 hasConcept C154945302 @default.
- W2770675377 hasConcept C2908647359 @default.
- W2770675377 hasConcept C33643355 @default.
- W2770675377 hasConcept C33923547 @default.
- W2770675377 hasConcept C41008148 @default.
- W2770675377 hasConcept C54355233 @default.
- W2770675377 hasConcept C67705224 @default.
- W2770675377 hasConcept C69738355 @default.
- W2770675377 hasConcept C70721500 @default.
- W2770675377 hasConcept C73269764 @default.
- W2770675377 hasConcept C86803240 @default.
- W2770675377 hasConceptScore W2770675377C100906024 @default.
- W2770675377 hasConceptScore W2770675377C104317684 @default.
- W2770675377 hasConceptScore W2770675377C105795698 @default.
- W2770675377 hasConceptScore W2770675377C11413529 @default.
- W2770675377 hasConceptScore W2770675377C124101348 @default.
- W2770675377 hasConceptScore W2770675377C144024400 @default.
- W2770675377 hasConceptScore W2770675377C149923435 @default.
- W2770675377 hasConceptScore W2770675377C154945302 @default.
- W2770675377 hasConceptScore W2770675377C2908647359 @default.
- W2770675377 hasConceptScore W2770675377C33643355 @default.
- W2770675377 hasConceptScore W2770675377C33923547 @default.
- W2770675377 hasConceptScore W2770675377C41008148 @default.
- W2770675377 hasConceptScore W2770675377C54355233 @default.
- W2770675377 hasConceptScore W2770675377C67705224 @default.
- W2770675377 hasConceptScore W2770675377C69738355 @default.
- W2770675377 hasConceptScore W2770675377C70721500 @default.
- W2770675377 hasConceptScore W2770675377C73269764 @default.
- W2770675377 hasConceptScore W2770675377C86803240 @default.
- W2770675377 hasFunder F4320320955 @default.
- W2770675377 hasFunder F4320321001 @default.
- W2770675377 hasFunder F4320335055 @default.
- W2770675377 hasIssue "8" @default.
- W2770675377 hasLocation W27706753771 @default.
- W2770675377 hasLocation W27706753772 @default.