Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770766252> ?p ?o ?g. }
- W2770766252 abstract "Logistic linear mixed model is widely used in experimental designs and genetic analysis with binary traits. Motivated by modern applications, we consider the case with many groups of random effects and each group corresponds to a variance component. When the number of variance components is large, fitting the logistic linear mixed model is challenging. We develop two efficient and stable minorization-maximization (MM) algorithms for the estimation of variance components based on the Laplace approximation of the logistic model. One of them leads to a simple iterative soft-thresholding algorithm for variance component selection using maximum penalized approximated likelihood. We demonstrate the variance component estimation and selection performance of our algorithms by simulation studies and a real data analysis." @default.
- W2770766252 created "2017-12-04" @default.
- W2770766252 creator A5041468731 @default.
- W2770766252 creator A5059203764 @default.
- W2770766252 creator A5060348530 @default.
- W2770766252 creator A5088575740 @default.
- W2770766252 date "2017-11-13" @default.
- W2770766252 modified "2023-09-26" @default.
- W2770766252 title "MM Algorithms for Variance Component Estimation and Selection in Logistic Linear Mixed Model" @default.
- W2770766252 cites W1524463862 @default.
- W2770766252 cites W1979228560 @default.
- W2770766252 cites W1988055263 @default.
- W2770766252 cites W1997318672 @default.
- W2770766252 cites W1997799412 @default.
- W2770766252 cites W2006336297 @default.
- W2770766252 cites W2014581807 @default.
- W2770766252 cites W2020925091 @default.
- W2770766252 cites W2032413716 @default.
- W2770766252 cites W2063655230 @default.
- W2770766252 cites W2074682976 @default.
- W2770766252 cites W2082907106 @default.
- W2770766252 cites W2088262142 @default.
- W2770766252 cites W2090692107 @default.
- W2770766252 cites W2144898279 @default.
- W2770766252 cites W2149414429 @default.
- W2770766252 cites W2154560360 @default.
- W2770766252 cites W2161564122 @default.
- W2770766252 cites W2407194592 @default.
- W2770766252 cites W2533329771 @default.
- W2770766252 cites W2905399339 @default.
- W2770766252 cites W3106418260 @default.
- W2770766252 cites W3151569376 @default.
- W2770766252 doi "https://doi.org/10.48550/arxiv.1711.04812" @default.
- W2770766252 hasPublicationYear "2017" @default.
- W2770766252 type Work @default.
- W2770766252 sameAs 2770766252 @default.
- W2770766252 citedByCount "0" @default.
- W2770766252 crossrefType "posted-content" @default.
- W2770766252 hasAuthorship W2770766252A5041468731 @default.
- W2770766252 hasAuthorship W2770766252A5059203764 @default.
- W2770766252 hasAuthorship W2770766252A5060348530 @default.
- W2770766252 hasAuthorship W2770766252A5088575740 @default.
- W2770766252 hasBestOaLocation W27707662521 @default.
- W2770766252 hasConcept C105795698 @default.
- W2770766252 hasConcept C11413529 @default.
- W2770766252 hasConcept C121332964 @default.
- W2770766252 hasConcept C121955636 @default.
- W2770766252 hasConcept C126255220 @default.
- W2770766252 hasConcept C144133560 @default.
- W2770766252 hasConcept C151956035 @default.
- W2770766252 hasConcept C153720581 @default.
- W2770766252 hasConcept C154945302 @default.
- W2770766252 hasConcept C16012445 @default.
- W2770766252 hasConcept C163175372 @default.
- W2770766252 hasConcept C167928553 @default.
- W2770766252 hasConcept C168167062 @default.
- W2770766252 hasConcept C182081679 @default.
- W2770766252 hasConcept C196083921 @default.
- W2770766252 hasConcept C2779190172 @default.
- W2770766252 hasConcept C3018076075 @default.
- W2770766252 hasConcept C33923547 @default.
- W2770766252 hasConcept C41008148 @default.
- W2770766252 hasConcept C48372109 @default.
- W2770766252 hasConcept C49781872 @default.
- W2770766252 hasConcept C61420037 @default.
- W2770766252 hasConcept C81917197 @default.
- W2770766252 hasConcept C94375191 @default.
- W2770766252 hasConcept C97355855 @default.
- W2770766252 hasConceptScore W2770766252C105795698 @default.
- W2770766252 hasConceptScore W2770766252C11413529 @default.
- W2770766252 hasConceptScore W2770766252C121332964 @default.
- W2770766252 hasConceptScore W2770766252C121955636 @default.
- W2770766252 hasConceptScore W2770766252C126255220 @default.
- W2770766252 hasConceptScore W2770766252C144133560 @default.
- W2770766252 hasConceptScore W2770766252C151956035 @default.
- W2770766252 hasConceptScore W2770766252C153720581 @default.
- W2770766252 hasConceptScore W2770766252C154945302 @default.
- W2770766252 hasConceptScore W2770766252C16012445 @default.
- W2770766252 hasConceptScore W2770766252C163175372 @default.
- W2770766252 hasConceptScore W2770766252C167928553 @default.
- W2770766252 hasConceptScore W2770766252C168167062 @default.
- W2770766252 hasConceptScore W2770766252C182081679 @default.
- W2770766252 hasConceptScore W2770766252C196083921 @default.
- W2770766252 hasConceptScore W2770766252C2779190172 @default.
- W2770766252 hasConceptScore W2770766252C3018076075 @default.
- W2770766252 hasConceptScore W2770766252C33923547 @default.
- W2770766252 hasConceptScore W2770766252C41008148 @default.
- W2770766252 hasConceptScore W2770766252C48372109 @default.
- W2770766252 hasConceptScore W2770766252C49781872 @default.
- W2770766252 hasConceptScore W2770766252C61420037 @default.
- W2770766252 hasConceptScore W2770766252C81917197 @default.
- W2770766252 hasConceptScore W2770766252C94375191 @default.
- W2770766252 hasConceptScore W2770766252C97355855 @default.
- W2770766252 hasLocation W27707662521 @default.
- W2770766252 hasLocation W27707662522 @default.
- W2770766252 hasOpenAccess W2770766252 @default.
- W2770766252 hasPrimaryLocation W27707662521 @default.
- W2770766252 hasRelatedWork W1974858528 @default.
- W2770766252 hasRelatedWork W1992914993 @default.
- W2770766252 hasRelatedWork W2050041713 @default.