Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770864023> ?p ?o ?g. }
- W2770864023 abstract "The purpose of this thesis was to examine the physiological and haematological responses to altitude training and hypoxic exposures. Furthermore to investigate if additional hypoxic exposure around a “live high-train high” altitude training camp could maximise adaptations.Study one provided a detailed insight into the current practices and perceptions of elite British endurance athletes and coaches to altitude training. A survey found that the athletes and support staff’s concerns included maintaining training load at altitude, reducing the acclimatisation period, maximising haematological adaptations and when to compete on return to sea level. These challenges were prioritised and investigated further in the thesis.Confidence in the optimised carbon monoxide (CO) rebreathing method (oCOR-method) is paramount when assessing haematological adaptations. Study two found that Radiometer ABL80 hemoximeter provided a more valid and reliable determination of percent carboxyhaemoglobin (%HbCO) with a minimum of three replicate blood samples to obtain an error of ≤1%. Study three found that administering different boluses of CO produced significantly different haemoglobin mass (tHbmass) results (0.6 mL·kg−1 = 791 ± 149 g; 1.0 mL·kg−1 = 788 ± 149 g; and 1.4 mL·kg−1 = 776 ± 148 g). A bolus of 0.6 to 1.0 mL·kg−1 provided sufficient precision and safety to determine %HbCO with the ABL80 hemoximeter.Additional hypoxic exposures have been identified as a strategy to maintain altitude haematological adaptations gained from altitude training camps. Study four investigated the time course of erythropoietin (EPO) and inflammatory markers after acute (2 h passive rest) hypoxic exposures (FiO2: 0.135, 0.125, 0.115, and 0.209). [EPO] increased in all hypoxic conditions 2 h post-exposure, being maintained until 4 h post-exposure, however, the largest increase came from the FiO2: 0.115 condition increasing by ~50% (P < 0.001). There were no differences found between hypoxic exposures in IL-6 or TNFα.Study five investigated the effect of acute hypoxia as a priming tool, by measuring the effect of increased circulating EPO on endurance performance. A 10 min pre-loaded treadmill running time trial (TT10) was preceded by 2 h normobaric hypoxia (HYPO; FiO2: 0.115), hyperoxia (HYPER; FiO2: 0.395) or normoxia (CON; FiO2: 0.209) 3.5 h prior to the TT10. No differences (P = 0.082) were found in distance covered during TT10 (HYPO: 2726 ± 277 vs. CON: 2724 ± 279 vs. HYPER: 2742 ± 281 m).Study six monitored physiological and haematological variables of elite endurance runners completing four weeks of live high-training high (LHTH; ~2,300 m) altitude training (ALT) compared to a control group (CON). A hypoxic sensitivity test (HST) was completed pre (PRE) and post-altitude (POST-2), alongside a treadmill test and oCOR-method. From PRE to POST-2 a difference in average lactate threshold (LT) (6.1 ± 4.6% vs. 1.8 ± 4.5%) and lactate turnpoint (LTP) (5.4 ± 3.8% vs. 1.1 ± 3.2%) was found within ALT, but not CON. Mean VO2max increased by 2.7 ± 3.5% in ALT, and decreased by 3.3 ± 6.3% in the CON group (P = 0.042). Total Hbmass increased by 1.9 ± 2.9% and 0.1 ± 3.3% (P > 0.05) from PRE to POST-2 in the ALT and CON group, respectively. No changes were found in mean tHbmass post-LHTH; however, EPO was lower at POST-1. The HST revealed desaturation at rest and hypoxic ventilatory response at exercise predicted individual changes in tHbmass and hypoxic cardiac response at rest predicted changes in VO2max.The evidence reported supports the notion that additional hypoxic exposures around an altitude training camp can maximise physiological and haematological adaptation via a prior understanding of an athlete’s response to hypoxia and therefore the optimisation the athlete’s altitude training needs." @default.
- W2770864023 created "2017-12-04" @default.
- W2770864023 creator A5014401195 @default.
- W2770864023 date "2016-09-01" @default.
- W2770864023 modified "2023-09-23" @default.
- W2770864023 title "Hypoxic exposure to optimise altitude training adaptations in elite endurance athletes" @default.
- W2770864023 cites W106302778 @default.
- W2770864023 cites W1152310673 @default.
- W2770864023 cites W1181763511 @default.
- W2770864023 cites W120288851 @default.
- W2770864023 cites W128984442 @default.
- W2770864023 cites W1486839280 @default.
- W2770864023 cites W1514241499 @default.
- W2770864023 cites W1544062721 @default.
- W2770864023 cites W1552502560 @default.
- W2770864023 cites W1573388079 @default.
- W2770864023 cites W1573934707 @default.
- W2770864023 cites W1755725628 @default.
- W2770864023 cites W176317830 @default.
- W2770864023 cites W1763265207 @default.
- W2770864023 cites W1827886163 @default.
- W2770864023 cites W1831432236 @default.
- W2770864023 cites W1849404514 @default.
- W2770864023 cites W1856542317 @default.
- W2770864023 cites W1868212978 @default.
- W2770864023 cites W1874457580 @default.
- W2770864023 cites W1895086674 @default.
- W2770864023 cites W1918072339 @default.
- W2770864023 cites W1924959201 @default.
- W2770864023 cites W1925632835 @default.
- W2770864023 cites W1934778443 @default.
- W2770864023 cites W1941016449 @default.
- W2770864023 cites W1954278379 @default.
- W2770864023 cites W1958683699 @default.
- W2770864023 cites W1964670192 @default.
- W2770864023 cites W1966542728 @default.
- W2770864023 cites W1967690748 @default.
- W2770864023 cites W1967988285 @default.
- W2770864023 cites W1968568796 @default.
- W2770864023 cites W1971724449 @default.
- W2770864023 cites W1971919047 @default.
- W2770864023 cites W1974206459 @default.
- W2770864023 cites W1974845208 @default.
- W2770864023 cites W1975029996 @default.
- W2770864023 cites W1975160190 @default.
- W2770864023 cites W1976775735 @default.
- W2770864023 cites W1977153928 @default.
- W2770864023 cites W1977945231 @default.
- W2770864023 cites W1977976375 @default.
- W2770864023 cites W1978155795 @default.
- W2770864023 cites W1978192258 @default.
- W2770864023 cites W1979982526 @default.
- W2770864023 cites W1980344459 @default.
- W2770864023 cites W1981026684 @default.
- W2770864023 cites W1983962926 @default.
- W2770864023 cites W1984940798 @default.
- W2770864023 cites W1984948598 @default.
- W2770864023 cites W1986765418 @default.
- W2770864023 cites W1986848594 @default.
- W2770864023 cites W1987032028 @default.
- W2770864023 cites W1987447695 @default.
- W2770864023 cites W1987559380 @default.
- W2770864023 cites W1988112144 @default.
- W2770864023 cites W1988125466 @default.
- W2770864023 cites W1988947758 @default.
- W2770864023 cites W1989165213 @default.
- W2770864023 cites W1989816640 @default.
- W2770864023 cites W1990803564 @default.
- W2770864023 cites W1991086201 @default.
- W2770864023 cites W1991471446 @default.
- W2770864023 cites W1993324234 @default.
- W2770864023 cites W1994424189 @default.
- W2770864023 cites W1994479364 @default.
- W2770864023 cites W1995036993 @default.
- W2770864023 cites W1996726395 @default.
- W2770864023 cites W1999193165 @default.
- W2770864023 cites W1999229465 @default.
- W2770864023 cites W1999955565 @default.
- W2770864023 cites W2000217855 @default.
- W2770864023 cites W2002356531 @default.
- W2770864023 cites W2003294927 @default.
- W2770864023 cites W2003598572 @default.
- W2770864023 cites W2003722720 @default.
- W2770864023 cites W2005616570 @default.
- W2770864023 cites W2007173575 @default.
- W2770864023 cites W2008341485 @default.
- W2770864023 cites W2008945646 @default.
- W2770864023 cites W2009211260 @default.
- W2770864023 cites W2011402184 @default.
- W2770864023 cites W2012477853 @default.
- W2770864023 cites W2013508567 @default.
- W2770864023 cites W2015795623 @default.
- W2770864023 cites W2017314326 @default.
- W2770864023 cites W2018794235 @default.
- W2770864023 cites W2019823222 @default.
- W2770864023 cites W2019996442 @default.
- W2770864023 cites W2021011593 @default.
- W2770864023 cites W2022588497 @default.
- W2770864023 cites W2025708841 @default.
- W2770864023 cites W2026376492 @default.