Matches in SemOpenAlex for { <https://semopenalex.org/work/W2770864065> ?p ?o ?g. }
- W2770864065 abstract "State-of-the-art systems for semantic image segmentation use feed-forward pipelines with fixed computational costs. Building an image segmentation system that works across a range of computational budgets is challenging and time-intensive as new architectures must be designed and trained for every computational setting. To address this problem we develop a recurrent neural network that successively improves prediction quality with each iteration. Importantly, the RNN may be deployed across a range of computational budgets by merely running the model for a variable number of iterations. We find that this architecture is uniquely suited for efficiently segmenting videos. By exploiting the segmentation of past frames, the RNN can perform video segmentation at similar quality but reduced computational cost compared to state-of-the-art image segmentation methods. When applied to static images in the PASCAL VOC 2012 and Cityscapes segmentation datasets, the RNN traces out a speed-accuracy curve that saturates near the performance of state-of-the-art segmentation methods." @default.
- W2770864065 created "2017-12-04" @default.
- W2770864065 creator A5032356827 @default.
- W2770864065 creator A5054372964 @default.
- W2770864065 creator A5060193696 @default.
- W2770864065 creator A5065742689 @default.
- W2770864065 date "2017-11-28" @default.
- W2770864065 modified "2023-09-27" @default.
- W2770864065 title "Recurrent Segmentation for Variable Computational Budgets" @default.
- W2770864065 cites W122025198 @default.
- W2770864065 cites W1484210532 @default.
- W2770864065 cites W1546771929 @default.
- W2770864065 cites W1610060839 @default.
- W2770864065 cites W1667652561 @default.
- W2770864065 cites W1686810756 @default.
- W2770864065 cites W1821462560 @default.
- W2770864065 cites W1850742715 @default.
- W2770864065 cites W1901129140 @default.
- W2770864065 cites W1923848918 @default.
- W2770864065 cites W1948751323 @default.
- W2770864065 cites W1949049686 @default.
- W2770864065 cites W2031489346 @default.
- W2770864065 cites W2064675550 @default.
- W2770864065 cites W2105297725 @default.
- W2770864065 cites W2111077768 @default.
- W2770864065 cites W2115907784 @default.
- W2770864065 cites W2130306094 @default.
- W2770864065 cites W2147880316 @default.
- W2770864065 cites W2186615578 @default.
- W2770864065 cites W2254462240 @default.
- W2770864065 cites W2271840356 @default.
- W2770864065 cites W2276024283 @default.
- W2770864065 cites W2325237720 @default.
- W2770864065 cites W2342840547 @default.
- W2770864065 cites W2406270520 @default.
- W2770864065 cites W2410303706 @default.
- W2770864065 cites W2412782625 @default.
- W2770864065 cites W2461677039 @default.
- W2770864065 cites W2523714292 @default.
- W2770864065 cites W2525778437 @default.
- W2770864065 cites W2557283755 @default.
- W2770864065 cites W2612445135 @default.
- W2770864065 cites W2630837129 @default.
- W2770864065 cites W2736941579 @default.
- W2770864065 cites W2745943519 @default.
- W2770864065 cites W2919115771 @default.
- W2770864065 cites W2949150497 @default.
- W2770864065 cites W2949650786 @default.
- W2770864065 cites W2950059857 @default.
- W2770864065 cites W2950139038 @default.
- W2770864065 cites W2950179405 @default.
- W2770864065 cites W2951008357 @default.
- W2770864065 cites W2951234442 @default.
- W2770864065 cites W2951523806 @default.
- W2770864065 cites W2951548327 @default.
- W2770864065 cites W2951638509 @default.
- W2770864065 cites W2951713345 @default.
- W2770864065 cites W2951793508 @default.
- W2770864065 cites W2951813836 @default.
- W2770864065 cites W2952119044 @default.
- W2770864065 cites W2952596663 @default.
- W2770864065 cites W2952632681 @default.
- W2770864065 cites W2952637581 @default.
- W2770864065 cites W2953106684 @default.
- W2770864065 cites W2953118818 @default.
- W2770864065 cites W2953139137 @default.
- W2770864065 cites W2953212265 @default.
- W2770864065 cites W2953360861 @default.
- W2770864065 cites W2963125010 @default.
- W2770864065 cites W2963542991 @default.
- W2770864065 hasPublicationYear "2017" @default.
- W2770864065 type Work @default.
- W2770864065 sameAs 2770864065 @default.
- W2770864065 citedByCount "3" @default.
- W2770864065 countsByYear W27708640652018 @default.
- W2770864065 countsByYear W27708640652019 @default.
- W2770864065 crossrefType "posted-content" @default.
- W2770864065 hasAuthorship W2770864065A5032356827 @default.
- W2770864065 hasAuthorship W2770864065A5054372964 @default.
- W2770864065 hasAuthorship W2770864065A5060193696 @default.
- W2770864065 hasAuthorship W2770864065A5065742689 @default.
- W2770864065 hasConcept C11413529 @default.
- W2770864065 hasConcept C124504099 @default.
- W2770864065 hasConcept C125308379 @default.
- W2770864065 hasConcept C127413603 @default.
- W2770864065 hasConcept C134306372 @default.
- W2770864065 hasConcept C144133560 @default.
- W2770864065 hasConcept C146978453 @default.
- W2770864065 hasConcept C147168706 @default.
- W2770864065 hasConcept C154945302 @default.
- W2770864065 hasConcept C162853370 @default.
- W2770864065 hasConcept C179799912 @default.
- W2770864065 hasConcept C182365436 @default.
- W2770864065 hasConcept C199360897 @default.
- W2770864065 hasConcept C204323151 @default.
- W2770864065 hasConcept C25694479 @default.
- W2770864065 hasConcept C31972630 @default.
- W2770864065 hasConcept C33923547 @default.
- W2770864065 hasConcept C41008148 @default.
- W2770864065 hasConcept C50644808 @default.