Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771006503> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2771006503 endingPage "132" @default.
- W2771006503 startingPage "111" @default.
- W2771006503 abstract "Solid-state NMR (ssNMR) can provide structural information at the most detailed level and, at the same time, is applicable in highly heterogeneous and complex molecular environments. In the last few years, ssNMR has made significant progress in uncovering structure and dynamics of proteins in their native cellular environments [1–4]. Additionally, ssNMR has proven to be useful in studying large biomolecular complexes as well as membrane proteins at the atomic level [5]. In such studies, innovative labeling schemes have become a powerful approach to tackle spectral crowding. In fact, selecting the appropriate isotope-labeling schemes and a careful choice of the ssNMR experiments to be conducted are critical for applications of ssNMR in complex biomolecular systems. Previously, we have introduced a software tool called FANDAS (Fast Analysis of multidimensional NMR DAta Sets) that supports such investigations from the early stages of sample preparation to the final data analysis [6]. Here, we present a new version of FANDAS, called FANDAS 2.0, with improved user interface and extended labeling scheme options allowing the user to rapidly predict and analyze ssNMR data sets for a given protein-based application. It provides flexible options for advanced users to customize the program for tailored applications. In addition, the list of ssNMR experiments that can be predicted now includes proton (1H) detected pulse sequences. FANDAS 2.0, written in Python, is freely available through a user-friendly web interface at http://milou.science.uu.nl/services/FANDAS ." @default.
- W2771006503 created "2017-12-04" @default.
- W2771006503 creator A5024449996 @default.
- W2771006503 creator A5058856221 @default.
- W2771006503 creator A5061906970 @default.
- W2771006503 creator A5064072429 @default.
- W2771006503 creator A5080937302 @default.
- W2771006503 creator A5085459980 @default.
- W2771006503 date "2017-11-19" @default.
- W2771006503 modified "2023-10-03" @default.
- W2771006503 title "Rapid Prediction of Multi-dimensional NMR Data Sets Using FANDAS" @default.
- W2771006503 cites W1508259544 @default.
- W2771006503 cites W1986686350 @default.
- W2771006503 cites W2013164714 @default.
- W2771006503 cites W2020016481 @default.
- W2771006503 cites W2029120587 @default.
- W2771006503 cites W2029476353 @default.
- W2771006503 cites W2034597926 @default.
- W2771006503 cites W2038266888 @default.
- W2771006503 cites W2038853976 @default.
- W2771006503 cites W2039821956 @default.
- W2771006503 cites W2050363430 @default.
- W2771006503 cites W2053527945 @default.
- W2771006503 cites W2089914156 @default.
- W2771006503 cites W2121473506 @default.
- W2771006503 cites W2126103104 @default.
- W2771006503 cites W2137842564 @default.
- W2771006503 cites W2141920771 @default.
- W2771006503 cites W2148455273 @default.
- W2771006503 cites W2153187042 @default.
- W2771006503 cites W2165938053 @default.
- W2771006503 cites W2170823043 @default.
- W2771006503 cites W2526097176 @default.
- W2771006503 cites W2549768376 @default.
- W2771006503 cites W604558270 @default.
- W2771006503 doi "https://doi.org/10.1007/978-1-4939-7386-6_6" @default.
- W2771006503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29151207" @default.
- W2771006503 hasPublicationYear "2017" @default.
- W2771006503 type Work @default.
- W2771006503 sameAs 2771006503 @default.
- W2771006503 citedByCount "3" @default.
- W2771006503 countsByYear W27710065032020 @default.
- W2771006503 countsByYear W27710065032021 @default.
- W2771006503 crossrefType "book-chapter" @default.
- W2771006503 hasAuthorship W2771006503A5024449996 @default.
- W2771006503 hasAuthorship W2771006503A5058856221 @default.
- W2771006503 hasAuthorship W2771006503A5061906970 @default.
- W2771006503 hasAuthorship W2771006503A5064072429 @default.
- W2771006503 hasAuthorship W2771006503A5080937302 @default.
- W2771006503 hasAuthorship W2771006503A5085459980 @default.
- W2771006503 hasBestOaLocation W27710065032 @default.
- W2771006503 hasConcept C113843644 @default.
- W2771006503 hasConcept C129307140 @default.
- W2771006503 hasConcept C157915830 @default.
- W2771006503 hasConcept C173608175 @default.
- W2771006503 hasConcept C199360897 @default.
- W2771006503 hasConcept C41008148 @default.
- W2771006503 hasConcept C459310 @default.
- W2771006503 hasConcept C519991488 @default.
- W2771006503 hasConceptScore W2771006503C113843644 @default.
- W2771006503 hasConceptScore W2771006503C129307140 @default.
- W2771006503 hasConceptScore W2771006503C157915830 @default.
- W2771006503 hasConceptScore W2771006503C173608175 @default.
- W2771006503 hasConceptScore W2771006503C199360897 @default.
- W2771006503 hasConceptScore W2771006503C41008148 @default.
- W2771006503 hasConceptScore W2771006503C459310 @default.
- W2771006503 hasConceptScore W2771006503C519991488 @default.
- W2771006503 hasLocation W27710065031 @default.
- W2771006503 hasLocation W27710065032 @default.
- W2771006503 hasLocation W27710065033 @default.
- W2771006503 hasOpenAccess W2771006503 @default.
- W2771006503 hasPrimaryLocation W27710065031 @default.
- W2771006503 hasRelatedWork W1974832135 @default.
- W2771006503 hasRelatedWork W2327204559 @default.
- W2771006503 hasRelatedWork W2366230866 @default.
- W2771006503 hasRelatedWork W2529681551 @default.
- W2771006503 hasRelatedWork W2547057562 @default.
- W2771006503 hasRelatedWork W2587671147 @default.
- W2771006503 hasRelatedWork W2623240261 @default.
- W2771006503 hasRelatedWork W3129254793 @default.
- W2771006503 hasRelatedWork W4368275096 @default.
- W2771006503 hasRelatedWork W2525727584 @default.
- W2771006503 isParatext "false" @default.
- W2771006503 isRetracted "false" @default.
- W2771006503 magId "2771006503" @default.
- W2771006503 workType "book-chapter" @default.