Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771026330> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2771026330 abstract "Estimation of surface roughness values, which is an indication of workpiece quality, is important in terms of reducing the cost and duration of machining. In this study, the surface roughness values of the medium carbon steel subjected to the spheronization heat treatment have estimated by artificial neural networks. ANN network model have been created by being chosen feedforward back propagation network model, the adoption of network structure and learning function LEARNGDM, TRAINLM as training algorithm, MSE for assessment of network performance and two hidden layers. The value of each neuron in the network have been transferred another layer by TANSIG, LOGSIG and PURELIN transfer functions. As a result, the artificial neural networks trained and tested have been found to be easy to use for estimating surface roughness values with a high percentage of R = 0.99001 according to MSE performance." @default.
- W2771026330 created "2017-12-04" @default.
- W2771026330 creator A5024733749 @default.
- W2771026330 creator A5033723576 @default.
- W2771026330 creator A5038849785 @default.
- W2771026330 date "2017-09-01" @default.
- W2771026330 modified "2023-09-27" @default.
- W2771026330 title "Küreselleştirme isil İşlemi uygulanmiş AISI 1050 Çeliğinin yüzey pürüzlülük değerlerinin yapay sinir ağlari ile modellenmesi" @default.
- W2771026330 cites W2018816054 @default.
- W2771026330 cites W2184011235 @default.
- W2771026330 cites W2184494293 @default.
- W2771026330 cites W2188769930 @default.
- W2771026330 cites W2219347052 @default.
- W2771026330 cites W2326754176 @default.
- W2771026330 cites W2356360169 @default.
- W2771026330 cites W2518095893 @default.
- W2771026330 cites W2556128300 @default.
- W2771026330 cites W2772478288 @default.
- W2771026330 cites W2183124280 @default.
- W2771026330 doi "https://doi.org/10.1109/idap.2017.8090308" @default.
- W2771026330 hasPublicationYear "2017" @default.
- W2771026330 type Work @default.
- W2771026330 sameAs 2771026330 @default.
- W2771026330 citedByCount "0" @default.
- W2771026330 crossrefType "proceedings-article" @default.
- W2771026330 hasAuthorship W2771026330A5024733749 @default.
- W2771026330 hasAuthorship W2771026330A5033723576 @default.
- W2771026330 hasAuthorship W2771026330A5038849785 @default.
- W2771026330 hasConcept C107365816 @default.
- W2771026330 hasConcept C154945302 @default.
- W2771026330 hasConcept C155032097 @default.
- W2771026330 hasConcept C159985019 @default.
- W2771026330 hasConcept C191897082 @default.
- W2771026330 hasConcept C192562407 @default.
- W2771026330 hasConcept C41008148 @default.
- W2771026330 hasConcept C47702885 @default.
- W2771026330 hasConcept C50644808 @default.
- W2771026330 hasConcept C523214423 @default.
- W2771026330 hasConcept C71039073 @default.
- W2771026330 hasConceptScore W2771026330C107365816 @default.
- W2771026330 hasConceptScore W2771026330C154945302 @default.
- W2771026330 hasConceptScore W2771026330C155032097 @default.
- W2771026330 hasConceptScore W2771026330C159985019 @default.
- W2771026330 hasConceptScore W2771026330C191897082 @default.
- W2771026330 hasConceptScore W2771026330C192562407 @default.
- W2771026330 hasConceptScore W2771026330C41008148 @default.
- W2771026330 hasConceptScore W2771026330C47702885 @default.
- W2771026330 hasConceptScore W2771026330C50644808 @default.
- W2771026330 hasConceptScore W2771026330C523214423 @default.
- W2771026330 hasConceptScore W2771026330C71039073 @default.
- W2771026330 hasLocation W27710263301 @default.
- W2771026330 hasOpenAccess W2771026330 @default.
- W2771026330 hasPrimaryLocation W27710263301 @default.
- W2771026330 isParatext "false" @default.
- W2771026330 isRetracted "false" @default.
- W2771026330 magId "2771026330" @default.
- W2771026330 workType "article" @default.