Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771036506> ?p ?o ?g. }
- W2771036506 endingPage "607" @default.
- W2771036506 startingPage "607" @default.
- W2771036506 abstract "Bearing vibration response studies are crucial for the condition monitoring of bearings and the quality inspection of rotating machinery systems. However, it is still very difficult to diagnose bearing faults, especially rolling element faults, due to the complex, high-dimensional and nonlinear characteristics of vibration signals as well as the strong background noise. A novel nonlinear analysis method—the symplectic entropy (SymEn) measure—is proposed to analyze the measured signals for fault monitoring of rolling bearings. The core technique of the SymEn approach is the entropy analysis based on the symplectic principal components. The dynamical characteristics of the rolling bearing data are analyzed using the SymEn method. Unlike other techniques consisting of high-dimensional features in the time-domain, frequency-domain and the empirical mode decomposition (EMD)/wavelet-domain, the SymEn approach constructs low-dimensional (i.e., two-dimensional) features based on the SymEn estimate. The vibration signals from our experiments and the Case Western Reserve University Bearing Data Center are applied to verify the effectiveness of the proposed method. Meanwhile, it is found that faulty bearings have a great influence on the other normal bearings. To sum up, the results indicate that the proposed method can be used to detect rolling bearing faults." @default.
- W2771036506 created "2017-12-04" @default.
- W2771036506 creator A5037277702 @default.
- W2771036506 creator A5037832021 @default.
- W2771036506 creator A5060024859 @default.
- W2771036506 date "2017-11-18" @default.
- W2771036506 modified "2023-09-24" @default.
- W2771036506 title "Fault Detection for Vibration Signals on Rolling Bearings Based on the Symplectic Entropy Method" @default.
- W2771036506 cites W1440202786 @default.
- W2771036506 cites W1587395205 @default.
- W2771036506 cites W1675477313 @default.
- W2771036506 cites W1862394037 @default.
- W2771036506 cites W1973850896 @default.
- W2771036506 cites W1975921140 @default.
- W2771036506 cites W1976479130 @default.
- W2771036506 cites W1980438367 @default.
- W2771036506 cites W1983638645 @default.
- W2771036506 cites W1987469570 @default.
- W2771036506 cites W1989536830 @default.
- W2771036506 cites W1993815223 @default.
- W2771036506 cites W1998645573 @default.
- W2771036506 cites W1999053292 @default.
- W2771036506 cites W2001141328 @default.
- W2771036506 cites W2002106843 @default.
- W2771036506 cites W2003205626 @default.
- W2771036506 cites W2037463492 @default.
- W2771036506 cites W2037995295 @default.
- W2771036506 cites W2041770946 @default.
- W2771036506 cites W2042559813 @default.
- W2771036506 cites W2043280059 @default.
- W2771036506 cites W2053186076 @default.
- W2771036506 cites W2057108578 @default.
- W2771036506 cites W2058983449 @default.
- W2771036506 cites W2077204677 @default.
- W2771036506 cites W2085009317 @default.
- W2771036506 cites W2098746383 @default.
- W2771036506 cites W2122924136 @default.
- W2771036506 cites W2133551681 @default.
- W2771036506 cites W2133661263 @default.
- W2771036506 cites W2153428002 @default.
- W2771036506 cites W2189028327 @default.
- W2771036506 cites W2234763990 @default.
- W2771036506 cites W2273817119 @default.
- W2771036506 cites W2287972354 @default.
- W2771036506 cites W2291058995 @default.
- W2771036506 cites W2314460211 @default.
- W2771036506 cites W2399697589 @default.
- W2771036506 cites W2442309921 @default.
- W2771036506 cites W2478384003 @default.
- W2771036506 cites W2490731853 @default.
- W2771036506 cites W2524788651 @default.
- W2771036506 cites W2551704299 @default.
- W2771036506 cites W2747909495 @default.
- W2771036506 cites W4249215371 @default.
- W2771036506 cites W950631084 @default.
- W2771036506 doi "https://doi.org/10.3390/e19110607" @default.
- W2771036506 hasPublicationYear "2017" @default.
- W2771036506 type Work @default.
- W2771036506 sameAs 2771036506 @default.
- W2771036506 citedByCount "16" @default.
- W2771036506 countsByYear W27710365062018 @default.
- W2771036506 countsByYear W27710365062019 @default.
- W2771036506 countsByYear W27710365062020 @default.
- W2771036506 countsByYear W27710365062021 @default.
- W2771036506 crossrefType "journal-article" @default.
- W2771036506 hasAuthorship W2771036506A5037277702 @default.
- W2771036506 hasAuthorship W2771036506A5037832021 @default.
- W2771036506 hasAuthorship W2771036506A5060024859 @default.
- W2771036506 hasBestOaLocation W27710365061 @default.
- W2771036506 hasConcept C103824480 @default.
- W2771036506 hasConcept C106301342 @default.
- W2771036506 hasConcept C112633086 @default.
- W2771036506 hasConcept C121332964 @default.
- W2771036506 hasConcept C127313418 @default.
- W2771036506 hasConcept C127413603 @default.
- W2771036506 hasConcept C134306372 @default.
- W2771036506 hasConcept C141354745 @default.
- W2771036506 hasConcept C154945302 @default.
- W2771036506 hasConcept C158622935 @default.
- W2771036506 hasConcept C165205528 @default.
- W2771036506 hasConcept C168619227 @default.
- W2771036506 hasConcept C175551986 @default.
- W2771036506 hasConcept C19118579 @default.
- W2771036506 hasConcept C198394728 @default.
- W2771036506 hasConcept C199978012 @default.
- W2771036506 hasConcept C24890656 @default.
- W2771036506 hasConcept C25570617 @default.
- W2771036506 hasConcept C2775924081 @default.
- W2771036506 hasConcept C2777052490 @default.
- W2771036506 hasConcept C2780155820 @default.
- W2771036506 hasConcept C31972630 @default.
- W2771036506 hasConcept C33923547 @default.
- W2771036506 hasConcept C41008148 @default.
- W2771036506 hasConcept C47432892 @default.
- W2771036506 hasConcept C47446073 @default.
- W2771036506 hasConcept C62520636 @default.
- W2771036506 hasConcept C66938386 @default.
- W2771036506 hasConcept C76155785 @default.