Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771058867> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2771058867 abstract "There have been an increasing number of various machine learning-based models successfully proposed and applied for automatic chemical-induced disease (CID) relation extraction. They, however, usually require carefully handcrafted rich feature sets, which rely on expert knowledge, thus require expensive human labor but normally still cannot generalize data well enough. In this paper, we propose a CID relation extraction model that learns features automatically through a Convolutional Neural Network (CNN) instead of traditional handcrafted features. We exploit the shortest dependency path between a disease and a chemical for identifying their CID relation. Dependency relations, with and without their direction information, are further investigated. Experimental results on benchmark datasets (namely the BioCreative V dataset) are very potential, demonstrating the effectiveness of our proposed model for CID relation extraction." @default.
- W2771058867 created "2017-12-04" @default.
- W2771058867 creator A5036041371 @default.
- W2771058867 creator A5071516373 @default.
- W2771058867 creator A5073413742 @default.
- W2771058867 creator A5078483041 @default.
- W2771058867 creator A5081434266 @default.
- W2771058867 creator A5086574827 @default.
- W2771058867 date "2017-10-01" @default.
- W2771058867 modified "2023-10-18" @default.
- W2771058867 title "Improving chemical-induced disease relation extraction with learned features based on convolutional neural network" @default.
- W2771058867 cites W1832693441 @default.
- W2771058867 cites W2099188065 @default.
- W2771058867 cites W2120615054 @default.
- W2771058867 cites W2136640051 @default.
- W2771058867 cites W2138627627 @default.
- W2771058867 cites W2153138487 @default.
- W2771058867 cites W2511500211 @default.
- W2771058867 cites W2511964075 @default.
- W2771058867 cites W2963171262 @default.
- W2771058867 cites W2964217331 @default.
- W2771058867 doi "https://doi.org/10.1109/kse.2017.8119474" @default.
- W2771058867 hasPublicationYear "2017" @default.
- W2771058867 type Work @default.
- W2771058867 sameAs 2771058867 @default.
- W2771058867 citedByCount "5" @default.
- W2771058867 countsByYear W27710588672020 @default.
- W2771058867 countsByYear W27710588672021 @default.
- W2771058867 countsByYear W27710588672022 @default.
- W2771058867 crossrefType "proceedings-article" @default.
- W2771058867 hasAuthorship W2771058867A5036041371 @default.
- W2771058867 hasAuthorship W2771058867A5071516373 @default.
- W2771058867 hasAuthorship W2771058867A5073413742 @default.
- W2771058867 hasAuthorship W2771058867A5078483041 @default.
- W2771058867 hasAuthorship W2771058867A5081434266 @default.
- W2771058867 hasAuthorship W2771058867A5086574827 @default.
- W2771058867 hasConcept C119857082 @default.
- W2771058867 hasConcept C124101348 @default.
- W2771058867 hasConcept C153180895 @default.
- W2771058867 hasConcept C153604712 @default.
- W2771058867 hasConcept C154945302 @default.
- W2771058867 hasConcept C185592680 @default.
- W2771058867 hasConcept C195807954 @default.
- W2771058867 hasConcept C25343380 @default.
- W2771058867 hasConcept C41008148 @default.
- W2771058867 hasConcept C43617362 @default.
- W2771058867 hasConcept C4725764 @default.
- W2771058867 hasConcept C50644808 @default.
- W2771058867 hasConcept C52622490 @default.
- W2771058867 hasConcept C81363708 @default.
- W2771058867 hasConceptScore W2771058867C119857082 @default.
- W2771058867 hasConceptScore W2771058867C124101348 @default.
- W2771058867 hasConceptScore W2771058867C153180895 @default.
- W2771058867 hasConceptScore W2771058867C153604712 @default.
- W2771058867 hasConceptScore W2771058867C154945302 @default.
- W2771058867 hasConceptScore W2771058867C185592680 @default.
- W2771058867 hasConceptScore W2771058867C195807954 @default.
- W2771058867 hasConceptScore W2771058867C25343380 @default.
- W2771058867 hasConceptScore W2771058867C41008148 @default.
- W2771058867 hasConceptScore W2771058867C43617362 @default.
- W2771058867 hasConceptScore W2771058867C4725764 @default.
- W2771058867 hasConceptScore W2771058867C50644808 @default.
- W2771058867 hasConceptScore W2771058867C52622490 @default.
- W2771058867 hasConceptScore W2771058867C81363708 @default.
- W2771058867 hasLocation W27710588671 @default.
- W2771058867 hasOpenAccess W2771058867 @default.
- W2771058867 hasPrimaryLocation W27710588671 @default.
- W2771058867 hasRelatedWork W2059299633 @default.
- W2771058867 hasRelatedWork W2518599539 @default.
- W2771058867 hasRelatedWork W2615195201 @default.
- W2771058867 hasRelatedWork W2732542196 @default.
- W2771058867 hasRelatedWork W2940977206 @default.
- W2771058867 hasRelatedWork W2969680539 @default.
- W2771058867 hasRelatedWork W2977314777 @default.
- W2771058867 hasRelatedWork W2995914718 @default.
- W2771058867 hasRelatedWork W3081496756 @default.
- W2771058867 hasRelatedWork W3156786002 @default.
- W2771058867 isParatext "false" @default.
- W2771058867 isRetracted "false" @default.
- W2771058867 magId "2771058867" @default.
- W2771058867 workType "article" @default.