Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771282241> ?p ?o ?g. }
- W2771282241 endingPage "63" @default.
- W2771282241 startingPage "49" @default.
- W2771282241 abstract "Abstract The ubiquitous natural sedimentary reservoirs and their high permeability have made the CO2 plume geothermal system increasingly attractive. However, the complicated fluid-rock interactions during the geothermal exploitation can cause severe reservoir damage, constraining the excellent heat mining performance of the CO2 and decreasing the possible applications of the CO2 plume geothermal system. In order to analyze and solve this energy issue affecting the geothermal exploitation, in this study, a comprehensive numerical simulation model was established, which can consider formation water evaporation, salt precipitation, CO2-water-rock geochemical reactions, and the changes in reservoir porosity and permeability in the CO2 plume geothermal (CPG) system. Using this model, the geochemical reactions and salt precipitation and their effects on the geothermal exploitation were analyzed, and some measures were proposed to reduce the influence of fluid-rock interactions on the heat mining rate. The simulation results show that the gravity and the negative gas-liquid capillary pressure gradient induced by evaporation can cause the formation water to flow toward the injector. The back flow of the formation water results in salt precipitation accumulation in the injection well region, which can cause severe reservoir damage and consequent reductions to the heat mining rate. The CO2-water-rock geochemical reactions could result in the dissolution of certain minerals and precipitation of others, but its minimal influence on the heat mining rate can be ignored. However, salt precipitation can affect the geochemical reactions by influencing the CO2 flow and distribution, which can reduce the heat mining rate up to 2/5 of the original. Sensitivity studies show that the reservoir condition can affect the salt precipitation and heat mining rate, so a sedimentary reservoir with high temperature, high porosity and permeability, and low salinity should be selected for CPG application, with an appropriately high injection-production pressure difference. The injection of low salinity water before CO2 injection and the combined injection of CO2 and water vapor can be applied to reduce the salt precipitation and increase the heat mining rate in the CPG system." @default.
- W2771282241 created "2017-12-22" @default.
- W2771282241 creator A5033685366 @default.
- W2771282241 creator A5034804093 @default.
- W2771282241 creator A5066599847 @default.
- W2771282241 creator A5077704768 @default.
- W2771282241 creator A5085233592 @default.
- W2771282241 creator A5090512352 @default.
- W2771282241 date "2018-10-01" @default.
- W2771282241 modified "2023-10-18" @default.
- W2771282241 title "The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system" @default.
- W2771282241 cites W1499314001 @default.
- W2771282241 cites W1963766601 @default.
- W2771282241 cites W1985499900 @default.
- W2771282241 cites W1986939478 @default.
- W2771282241 cites W2000939692 @default.
- W2771282241 cites W2005894898 @default.
- W2771282241 cites W2011090459 @default.
- W2771282241 cites W2016603128 @default.
- W2771282241 cites W2016794034 @default.
- W2771282241 cites W2020230375 @default.
- W2771282241 cites W2023828514 @default.
- W2771282241 cites W2025895322 @default.
- W2771282241 cites W2027537231 @default.
- W2771282241 cites W2031842405 @default.
- W2771282241 cites W2034320689 @default.
- W2771282241 cites W2034467201 @default.
- W2771282241 cites W2038171186 @default.
- W2771282241 cites W2044182995 @default.
- W2771282241 cites W2049236546 @default.
- W2771282241 cites W2050669921 @default.
- W2771282241 cites W2060352298 @default.
- W2771282241 cites W2072291049 @default.
- W2771282241 cites W2074465322 @default.
- W2771282241 cites W2077752979 @default.
- W2771282241 cites W2080272390 @default.
- W2771282241 cites W2080434803 @default.
- W2771282241 cites W2080890343 @default.
- W2771282241 cites W2093247081 @default.
- W2771282241 cites W2104723734 @default.
- W2771282241 cites W2109216998 @default.
- W2771282241 cites W2117965898 @default.
- W2771282241 cites W2123994082 @default.
- W2771282241 cites W2129288307 @default.
- W2771282241 cites W2139881352 @default.
- W2771282241 cites W2152385292 @default.
- W2771282241 cites W2152783510 @default.
- W2771282241 cites W2159900744 @default.
- W2771282241 cites W2166451257 @default.
- W2771282241 cites W2515405966 @default.
- W2771282241 cites W2526283918 @default.
- W2771282241 cites W2589173652 @default.
- W2771282241 cites W2750879428 @default.
- W2771282241 cites W310247653 @default.
- W2771282241 doi "https://doi.org/10.1016/j.apenergy.2017.10.114" @default.
- W2771282241 hasPublicationYear "2018" @default.
- W2771282241 type Work @default.
- W2771282241 sameAs 2771282241 @default.
- W2771282241 citedByCount "104" @default.
- W2771282241 countsByYear W27712822412018 @default.
- W2771282241 countsByYear W27712822412019 @default.
- W2771282241 countsByYear W27712822412020 @default.
- W2771282241 countsByYear W27712822412021 @default.
- W2771282241 countsByYear W27712822412022 @default.
- W2771282241 countsByYear W27712822412023 @default.
- W2771282241 crossrefType "journal-article" @default.
- W2771282241 hasAuthorship W2771282241A5033685366 @default.
- W2771282241 hasAuthorship W2771282241A5034804093 @default.
- W2771282241 hasAuthorship W2771282241A5066599847 @default.
- W2771282241 hasAuthorship W2771282241A5077704768 @default.
- W2771282241 hasAuthorship W2771282241A5085233592 @default.
- W2771282241 hasAuthorship W2771282241A5090512352 @default.
- W2771282241 hasConcept C111766609 @default.
- W2771282241 hasConcept C127313418 @default.
- W2771282241 hasConcept C153294291 @default.
- W2771282241 hasConcept C17409809 @default.
- W2771282241 hasConcept C1965285 @default.
- W2771282241 hasConcept C205649164 @default.
- W2771282241 hasConcept C2775840915 @default.
- W2771282241 hasConcept C518406490 @default.
- W2771282241 hasConcept C78762247 @default.
- W2771282241 hasConcept C8058405 @default.
- W2771282241 hasConceptScore W2771282241C111766609 @default.
- W2771282241 hasConceptScore W2771282241C127313418 @default.
- W2771282241 hasConceptScore W2771282241C153294291 @default.
- W2771282241 hasConceptScore W2771282241C17409809 @default.
- W2771282241 hasConceptScore W2771282241C1965285 @default.
- W2771282241 hasConceptScore W2771282241C205649164 @default.
- W2771282241 hasConceptScore W2771282241C2775840915 @default.
- W2771282241 hasConceptScore W2771282241C518406490 @default.
- W2771282241 hasConceptScore W2771282241C78762247 @default.
- W2771282241 hasConceptScore W2771282241C8058405 @default.
- W2771282241 hasFunder F4320321001 @default.
- W2771282241 hasFunder F4320321547 @default.
- W2771282241 hasFunder F4320335787 @default.
- W2771282241 hasLocation W27712822411 @default.
- W2771282241 hasOpenAccess W2771282241 @default.
- W2771282241 hasPrimaryLocation W27712822411 @default.