Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771302859> ?p ?o ?g. }
- W2771302859 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2017A multiple level set method for three-dimensional inversion of magnetic dataAuthors: Wenbin LiWangtao LuJianliang QianYaoguo LiWenbin LiMichigan State UniversitySearch for more papers by this author, Wangtao LuMichigan State UniversitySearch for more papers by this author, Jianliang QianMichigan State UniversitySearch for more papers by this author, and Yaoguo LiColorado School of MinesSearch for more papers by this authorhttps://doi.org/10.1190/segam2017-17729331.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract We present a multiple level-set method for inverting magnetic data produced by weak induced magnetization only. The method is designed to deal with a specific class of 3-D magnetic inverse problems in which the magnetic susceptibility is known and the objective of the inversion is to find the boundary or geometrical shape of the causative bodies. We adopt the conceptual representation of the subsurface geological structure by a set of magnetic bodies each having a uniform magnetic susceptibility embedded in a non-magnetic background. This representation enables us to reformulate the magnetic inverse problem into a domain inverse problem for those unknown domains defining the supports of those magnetic causative bodies. Since each body may take on a variety of shapes, and we may not know the number of bodies a priori either, we use multiple level-set functions to parameterize these domains so that the domain inverse problem can be further reduced to an optimization problem of multiple level-set functions. We apply the new method to both synthetic and field data sets and demonstrate its effectiveness. Presentation Date: Tuesday, September 26, 2017 Start Time: 9:45 AM Location: 360C Presentation Type: ORAL Keywords: inversion, magnetics, gravityPermalink: https://doi.org/10.1190/segam2017-17729331.1FiguresReferencesRelatedDetailsCited byShape-constrained geophysical inversionHuseyin Denli and Jeremy S. Brandman23 September 2022 | GEOPHYSICS, Vol. 87, No. 6Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methodsInverse Problems & Imaging, Vol. 15, No. 3 SEG Technical Program Expanded Abstracts 2017ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2017 Pages: 6093 publication data© 2017 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 17 Aug 2017 CITATION INFORMATION Wenbin Li, Wangtao Lu, Jianliang Qian, and Yaoguo Li, (2017), A multiple level set method for three-dimensional inversion of magnetic data, SEG Technical Program Expanded Abstracts : 1723-1728. https://doi.org/10.1190/segam2017-17729331.1 Plain-Language Summary KeywordsinversionmagneticsgravityPDF DownloadLoading ..." @default.
- W2771302859 created "2017-12-22" @default.
- W2771302859 creator A5013248904 @default.
- W2771302859 creator A5062689554 @default.
- W2771302859 creator A5091432451 @default.
- W2771302859 creator A5091798976 @default.
- W2771302859 date "2017-08-17" @default.
- W2771302859 modified "2023-09-24" @default.
- W2771302859 title "A multiple level set method for three-dimensional inversion of magnetic data" @default.
- W2771302859 cites W1991113069 @default.
- W2771302859 cites W1998593895 @default.
- W2771302859 cites W2013782058 @default.
- W2771302859 cites W2028640410 @default.
- W2771302859 cites W2030567353 @default.
- W2771302859 cites W2044533519 @default.
- W2771302859 cites W2047826213 @default.
- W2771302859 cites W2055906393 @default.
- W2771302859 cites W2092553875 @default.
- W2771302859 cites W2099696716 @default.
- W2771302859 cites W2113247321 @default.
- W2771302859 cites W2116102128 @default.
- W2771302859 cites W2120903141 @default.
- W2771302859 cites W2125240018 @default.
- W2771302859 cites W2126105483 @default.
- W2771302859 cites W2132363464 @default.
- W2771302859 cites W2132404483 @default.
- W2771302859 cites W2137379327 @default.
- W2771302859 cites W2157510188 @default.
- W2771302859 cites W2164289056 @default.
- W2771302859 cites W2166948212 @default.
- W2771302859 cites W2167719122 @default.
- W2771302859 cites W2170832205 @default.
- W2771302859 cites W2287510215 @default.
- W2771302859 cites W2325461467 @default.
- W2771302859 cites W2325537146 @default.
- W2771302859 cites W2330836084 @default.
- W2771302859 cites W2335204932 @default.
- W2771302859 cites W4380182745 @default.
- W2771302859 doi "https://doi.org/10.1190/segam2017-17729331.1" @default.
- W2771302859 hasPublicationYear "2017" @default.
- W2771302859 type Work @default.
- W2771302859 sameAs 2771302859 @default.
- W2771302859 citedByCount "3" @default.
- W2771302859 countsByYear W27713028592021 @default.
- W2771302859 countsByYear W27713028592022 @default.
- W2771302859 countsByYear W27713028592023 @default.
- W2771302859 crossrefType "proceedings-article" @default.
- W2771302859 hasAuthorship W2771302859A5013248904 @default.
- W2771302859 hasAuthorship W2771302859A5062689554 @default.
- W2771302859 hasAuthorship W2771302859A5091432451 @default.
- W2771302859 hasAuthorship W2771302859A5091798976 @default.
- W2771302859 hasConcept C109007969 @default.
- W2771302859 hasConcept C111472728 @default.
- W2771302859 hasConcept C11413529 @default.
- W2771302859 hasConcept C115260700 @default.
- W2771302859 hasConcept C121332964 @default.
- W2771302859 hasConcept C127313418 @default.
- W2771302859 hasConcept C134306372 @default.
- W2771302859 hasConcept C135252773 @default.
- W2771302859 hasConcept C138885662 @default.
- W2771302859 hasConcept C151730666 @default.
- W2771302859 hasConcept C177264268 @default.
- W2771302859 hasConcept C17744445 @default.
- W2771302859 hasConcept C182260160 @default.
- W2771302859 hasConcept C1893757 @default.
- W2771302859 hasConcept C199360897 @default.
- W2771302859 hasConcept C199539241 @default.
- W2771302859 hasConcept C207467116 @default.
- W2771302859 hasConcept C2524010 @default.
- W2771302859 hasConcept C2776359362 @default.
- W2771302859 hasConcept C32546565 @default.
- W2771302859 hasConcept C33923547 @default.
- W2771302859 hasConcept C41008148 @default.
- W2771302859 hasConcept C62520636 @default.
- W2771302859 hasConcept C75553542 @default.
- W2771302859 hasConcept C94625758 @default.
- W2771302859 hasConceptScore W2771302859C109007969 @default.
- W2771302859 hasConceptScore W2771302859C111472728 @default.
- W2771302859 hasConceptScore W2771302859C11413529 @default.
- W2771302859 hasConceptScore W2771302859C115260700 @default.
- W2771302859 hasConceptScore W2771302859C121332964 @default.
- W2771302859 hasConceptScore W2771302859C127313418 @default.
- W2771302859 hasConceptScore W2771302859C134306372 @default.
- W2771302859 hasConceptScore W2771302859C135252773 @default.
- W2771302859 hasConceptScore W2771302859C138885662 @default.
- W2771302859 hasConceptScore W2771302859C151730666 @default.
- W2771302859 hasConceptScore W2771302859C177264268 @default.
- W2771302859 hasConceptScore W2771302859C17744445 @default.
- W2771302859 hasConceptScore W2771302859C182260160 @default.
- W2771302859 hasConceptScore W2771302859C1893757 @default.
- W2771302859 hasConceptScore W2771302859C199360897 @default.
- W2771302859 hasConceptScore W2771302859C199539241 @default.
- W2771302859 hasConceptScore W2771302859C207467116 @default.
- W2771302859 hasConceptScore W2771302859C2524010 @default.
- W2771302859 hasConceptScore W2771302859C2776359362 @default.
- W2771302859 hasConceptScore W2771302859C32546565 @default.
- W2771302859 hasConceptScore W2771302859C33923547 @default.
- W2771302859 hasConceptScore W2771302859C41008148 @default.
- W2771302859 hasConceptScore W2771302859C62520636 @default.
- W2771302859 hasConceptScore W2771302859C75553542 @default.