Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771342141> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2771342141 abstract "Fingerprinting Localization Solutions (FPSs) enjoy huge popularity due to their good performance and minimal environment information requirement. Considered as a data-driven approach, many modern data analytics can be used to improve its performance. In this paper, we propose tow learning algorithms, namely a deep learning architecture for regression and Support Vector Machine (SVM) for classification, to output the estimated location directly from the measured fingerprints. The design issues of the proposed neural network is discussed including the training algorithm, regularization and hyperparameter selection. It is discussed how data augmentation methods can be utilized to extend the measurements. The deep learning approach can be used to save the data collection time significantly using a pre-trained model. Moreover the run-time complexity is significantly reduced. The numerical analysis show that in some case, only 10 percent of original training database is enough to get acceptable performance on a pre-trained model." @default.
- W2771342141 created "2017-12-22" @default.
- W2771342141 creator A5066277118 @default.
- W2771342141 creator A5083706779 @default.
- W2771342141 creator A5088838600 @default.
- W2771342141 date "2017-11-01" @default.
- W2771342141 modified "2023-09-28" @default.
- W2771342141 title "A deep learning approach to fingerprinting indoor localization solutions" @default.
- W2771342141 cites W1609591105 @default.
- W2771342141 cites W1630879738 @default.
- W2771342141 cites W1677182931 @default.
- W2771342141 cites W1806891645 @default.
- W2771342141 cites W1981373725 @default.
- W2771342141 cites W2136922672 @default.
- W2771342141 cites W2309512289 @default.
- W2771342141 cites W2769423763 @default.
- W2771342141 cites W4235243453 @default.
- W2771342141 doi "https://doi.org/10.1109/atnac.2017.8215428" @default.
- W2771342141 hasPublicationYear "2017" @default.
- W2771342141 type Work @default.
- W2771342141 sameAs 2771342141 @default.
- W2771342141 citedByCount "23" @default.
- W2771342141 countsByYear W27713421412019 @default.
- W2771342141 countsByYear W27713421412020 @default.
- W2771342141 countsByYear W27713421412021 @default.
- W2771342141 countsByYear W27713421412022 @default.
- W2771342141 countsByYear W27713421412023 @default.
- W2771342141 crossrefType "proceedings-article" @default.
- W2771342141 hasAuthorship W2771342141A5066277118 @default.
- W2771342141 hasAuthorship W2771342141A5083706779 @default.
- W2771342141 hasAuthorship W2771342141A5088838600 @default.
- W2771342141 hasConcept C108583219 @default.
- W2771342141 hasConcept C119857082 @default.
- W2771342141 hasConcept C12267149 @default.
- W2771342141 hasConcept C124101348 @default.
- W2771342141 hasConcept C154945302 @default.
- W2771342141 hasConcept C2776135515 @default.
- W2771342141 hasConcept C41008148 @default.
- W2771342141 hasConcept C50644808 @default.
- W2771342141 hasConcept C67186912 @default.
- W2771342141 hasConcept C77088390 @default.
- W2771342141 hasConcept C8642999 @default.
- W2771342141 hasConceptScore W2771342141C108583219 @default.
- W2771342141 hasConceptScore W2771342141C119857082 @default.
- W2771342141 hasConceptScore W2771342141C12267149 @default.
- W2771342141 hasConceptScore W2771342141C124101348 @default.
- W2771342141 hasConceptScore W2771342141C154945302 @default.
- W2771342141 hasConceptScore W2771342141C2776135515 @default.
- W2771342141 hasConceptScore W2771342141C41008148 @default.
- W2771342141 hasConceptScore W2771342141C50644808 @default.
- W2771342141 hasConceptScore W2771342141C67186912 @default.
- W2771342141 hasConceptScore W2771342141C77088390 @default.
- W2771342141 hasConceptScore W2771342141C8642999 @default.
- W2771342141 hasLocation W27713421411 @default.
- W2771342141 hasOpenAccess W2771342141 @default.
- W2771342141 hasPrimaryLocation W27713421411 @default.
- W2771342141 hasRelatedWork W2803710604 @default.
- W2771342141 hasRelatedWork W3136979370 @default.
- W2771342141 hasRelatedWork W4281616679 @default.
- W2771342141 hasRelatedWork W4283697347 @default.
- W2771342141 hasRelatedWork W4285106639 @default.
- W2771342141 hasRelatedWork W4295309597 @default.
- W2771342141 hasRelatedWork W4298144215 @default.
- W2771342141 hasRelatedWork W4307195028 @default.
- W2771342141 hasRelatedWork W4311106074 @default.
- W2771342141 hasRelatedWork W4320494184 @default.
- W2771342141 isParatext "false" @default.
- W2771342141 isRetracted "false" @default.
- W2771342141 magId "2771342141" @default.
- W2771342141 workType "article" @default.