Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771584054> ?p ?o ?g. }
- W2771584054 endingPage "835" @default.
- W2771584054 startingPage "828" @default.
- W2771584054 abstract "Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611 nm, 1 detection pixel, N2O/C2H2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO3 and HF. HR-CS GF AAS (Tpyr = 1400 °C, Tatom = 2650 °C) has evaluated Si in pyrolysis water and bio-oil at 251.611 nm, and in peach pit biomass and ash at 221.174 nm using SS, both wavelengths with 1 detection pixel. Rhodium (300 μg) was applied as permanent modifier and 10 μg Pd + 6 μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09–20 mg kg–1, and LOQ 0.3–20 mg kg–1, considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11–0.92% m m–1, 1.1–1.7 mg kg–1, 3.3–13 mg kg–1, and 0.41–1.4% m m–1, in biomass, bio-oil, pyrolysis water and ash, respectively. Si remained mostly in the ash, leading to a mass fraction of up to 103%, even when the Si loss is not considered. Silicon concentration in bio-oil was below 1.7 mg kg–1, which is suitable for its application as a fuel. The developed methods using HR-CS AAS are suitable for Si determination in biomass, bio-oil, pyrolysis water, and ash. The application of bio-oil as an alternative fuel would be possible evaluating its Si content due to its low levels. The mass balance for Si has proved to be an important tool in order to evaluate the correct disposal of pyrolysis process byproducts." @default.
- W2771584054 created "2017-12-22" @default.
- W2771584054 creator A5003418415 @default.
- W2771584054 creator A5004980654 @default.
- W2771584054 creator A5021791688 @default.
- W2771584054 creator A5057251977 @default.
- W2771584054 creator A5073665999 @default.
- W2771584054 creator A5074292869 @default.
- W2771584054 date "2018-03-01" @default.
- W2771584054 modified "2023-10-16" @default.
- W2771584054 title "Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry" @default.
- W2771584054 cites W1184310373 @default.
- W2771584054 cites W1865616405 @default.
- W2771584054 cites W1966327255 @default.
- W2771584054 cites W1972580234 @default.
- W2771584054 cites W1974514116 @default.
- W2771584054 cites W1975717130 @default.
- W2771584054 cites W1983602603 @default.
- W2771584054 cites W1998927705 @default.
- W2771584054 cites W2002038265 @default.
- W2771584054 cites W2002057722 @default.
- W2771584054 cites W2004008118 @default.
- W2771584054 cites W2008458256 @default.
- W2771584054 cites W2013954571 @default.
- W2771584054 cites W2016145644 @default.
- W2771584054 cites W2042281235 @default.
- W2771584054 cites W2044969119 @default.
- W2771584054 cites W2056209499 @default.
- W2771584054 cites W2057839714 @default.
- W2771584054 cites W2064344386 @default.
- W2771584054 cites W2068721223 @default.
- W2771584054 cites W2075794517 @default.
- W2771584054 cites W2076878081 @default.
- W2771584054 cites W2083086524 @default.
- W2771584054 cites W2086566672 @default.
- W2771584054 cites W2114638882 @default.
- W2771584054 cites W2138277172 @default.
- W2771584054 cites W2181483566 @default.
- W2771584054 cites W2292741310 @default.
- W2771584054 cites W2319614173 @default.
- W2771584054 cites W2340563910 @default.
- W2771584054 cites W2356587904 @default.
- W2771584054 cites W2467712162 @default.
- W2771584054 cites W2521651686 @default.
- W2771584054 cites W2560427633 @default.
- W2771584054 cites W2595157316 @default.
- W2771584054 doi "https://doi.org/10.1016/j.talanta.2017.12.022" @default.
- W2771584054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29310314" @default.
- W2771584054 hasPublicationYear "2018" @default.
- W2771584054 type Work @default.
- W2771584054 sameAs 2771584054 @default.
- W2771584054 citedByCount "12" @default.
- W2771584054 countsByYear W27715840542018 @default.
- W2771584054 countsByYear W27715840542019 @default.
- W2771584054 countsByYear W27715840542020 @default.
- W2771584054 countsByYear W27715840542021 @default.
- W2771584054 countsByYear W27715840542022 @default.
- W2771584054 countsByYear W27715840542023 @default.
- W2771584054 crossrefType "journal-article" @default.
- W2771584054 hasAuthorship W2771584054A5003418415 @default.
- W2771584054 hasAuthorship W2771584054A5004980654 @default.
- W2771584054 hasAuthorship W2771584054A5021791688 @default.
- W2771584054 hasAuthorship W2771584054A5057251977 @default.
- W2771584054 hasAuthorship W2771584054A5073665999 @default.
- W2771584054 hasAuthorship W2771584054A5074292869 @default.
- W2771584054 hasBestOaLocation W27715840541 @default.
- W2771584054 hasConcept C107872376 @default.
- W2771584054 hasConcept C111368507 @default.
- W2771584054 hasConcept C113196181 @default.
- W2771584054 hasConcept C115540264 @default.
- W2771584054 hasConcept C121332964 @default.
- W2771584054 hasConcept C127313418 @default.
- W2771584054 hasConcept C162356407 @default.
- W2771584054 hasConcept C178790620 @default.
- W2771584054 hasConcept C185592680 @default.
- W2771584054 hasConcept C2777898358 @default.
- W2771584054 hasConcept C33619061 @default.
- W2771584054 hasConcept C36759035 @default.
- W2771584054 hasConcept C43617362 @default.
- W2771584054 hasConcept C62520636 @default.
- W2771584054 hasConceptScore W2771584054C107872376 @default.
- W2771584054 hasConceptScore W2771584054C111368507 @default.
- W2771584054 hasConceptScore W2771584054C113196181 @default.
- W2771584054 hasConceptScore W2771584054C115540264 @default.
- W2771584054 hasConceptScore W2771584054C121332964 @default.
- W2771584054 hasConceptScore W2771584054C127313418 @default.
- W2771584054 hasConceptScore W2771584054C162356407 @default.
- W2771584054 hasConceptScore W2771584054C178790620 @default.
- W2771584054 hasConceptScore W2771584054C185592680 @default.
- W2771584054 hasConceptScore W2771584054C2777898358 @default.
- W2771584054 hasConceptScore W2771584054C33619061 @default.
- W2771584054 hasConceptScore W2771584054C36759035 @default.
- W2771584054 hasConceptScore W2771584054C43617362 @default.
- W2771584054 hasConceptScore W2771584054C62520636 @default.
- W2771584054 hasFunder F4320322025 @default.
- W2771584054 hasLocation W27715840541 @default.
- W2771584054 hasLocation W27715840542 @default.
- W2771584054 hasOpenAccess W2771584054 @default.