Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771590529> ?p ?o ?g. }
- W2771590529 endingPage "189" @default.
- W2771590529 startingPage "176" @default.
- W2771590529 abstract "Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans." @default.
- W2771590529 created "2017-12-22" @default.
- W2771590529 creator A5011888340 @default.
- W2771590529 creator A5012751147 @default.
- W2771590529 creator A5020211325 @default.
- W2771590529 creator A5029021823 @default.
- W2771590529 creator A5051649145 @default.
- W2771590529 creator A5058662444 @default.
- W2771590529 creator A5087446167 @default.
- W2771590529 date "2019-01-01" @default.
- W2771590529 modified "2023-10-14" @default.
- W2771590529 title "Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans" @default.
- W2771590529 cites W1870126640 @default.
- W2771590529 cites W18798524 @default.
- W2771590529 cites W1893210478 @default.
- W2771590529 cites W1903029394 @default.
- W2771590529 cites W1984578972 @default.
- W2771590529 cites W1985251259 @default.
- W2771590529 cites W1987674826 @default.
- W2771590529 cites W2006968062 @default.
- W2771590529 cites W2009621568 @default.
- W2771590529 cites W2019591724 @default.
- W2771590529 cites W2034102777 @default.
- W2771590529 cites W2040260094 @default.
- W2771590529 cites W2042720821 @default.
- W2771590529 cites W2068730032 @default.
- W2771590529 cites W2099668681 @default.
- W2771590529 cites W2101689475 @default.
- W2771590529 cites W2112796928 @default.
- W2771590529 cites W2145339207 @default.
- W2771590529 cites W2156290174 @default.
- W2771590529 cites W2162140684 @default.
- W2771590529 cites W2163922914 @default.
- W2771590529 cites W2164598857 @default.
- W2771590529 cites W2168356304 @default.
- W2771590529 cites W2168747910 @default.
- W2771590529 cites W2179488730 @default.
- W2771590529 cites W2183182206 @default.
- W2771590529 cites W2225887246 @default.
- W2771590529 cites W2285925437 @default.
- W2771590529 cites W2290780092 @default.
- W2771590529 cites W2318872361 @default.
- W2771590529 cites W2469312016 @default.
- W2771590529 cites W2919115771 @default.
- W2771590529 cites W2964304707 @default.
- W2771590529 cites W32403112 @default.
- W2771590529 cites W4244130230 @default.
- W2771590529 cites W639708223 @default.
- W2771590529 doi "https://doi.org/10.1109/tpami.2017.2782687" @default.
- W2771590529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29990011" @default.
- W2771590529 hasPublicationYear "2019" @default.
- W2771590529 type Work @default.
- W2771590529 sameAs 2771590529 @default.
- W2771590529 citedByCount "202" @default.
- W2771590529 countsByYear W27715905292018 @default.
- W2771590529 countsByYear W27715905292019 @default.
- W2771590529 countsByYear W27715905292020 @default.
- W2771590529 countsByYear W27715905292021 @default.
- W2771590529 countsByYear W27715905292022 @default.
- W2771590529 countsByYear W27715905292023 @default.
- W2771590529 crossrefType "journal-article" @default.
- W2771590529 hasAuthorship W2771590529A5011888340 @default.
- W2771590529 hasAuthorship W2771590529A5012751147 @default.
- W2771590529 hasAuthorship W2771590529A5020211325 @default.
- W2771590529 hasAuthorship W2771590529A5029021823 @default.
- W2771590529 hasAuthorship W2771590529A5051649145 @default.
- W2771590529 hasAuthorship W2771590529A5058662444 @default.
- W2771590529 hasAuthorship W2771590529A5087446167 @default.
- W2771590529 hasConcept C108583219 @default.
- W2771590529 hasConcept C119857082 @default.
- W2771590529 hasConcept C121332964 @default.
- W2771590529 hasConcept C12713177 @default.
- W2771590529 hasConcept C138885662 @default.
- W2771590529 hasConcept C153180895 @default.
- W2771590529 hasConcept C154945302 @default.
- W2771590529 hasConcept C2776151529 @default.
- W2771590529 hasConcept C2776401178 @default.
- W2771590529 hasConcept C2778755073 @default.
- W2771590529 hasConcept C2780297707 @default.
- W2771590529 hasConcept C2781238097 @default.
- W2771590529 hasConcept C31601959 @default.
- W2771590529 hasConcept C31972630 @default.
- W2771590529 hasConcept C41008148 @default.
- W2771590529 hasConcept C41895202 @default.
- W2771590529 hasConcept C62520636 @default.
- W2771590529 hasConcept C97541855 @default.
- W2771590529 hasConceptScore W2771590529C108583219 @default.
- W2771590529 hasConceptScore W2771590529C119857082 @default.
- W2771590529 hasConceptScore W2771590529C121332964 @default.
- W2771590529 hasConceptScore W2771590529C12713177 @default.
- W2771590529 hasConceptScore W2771590529C138885662 @default.
- W2771590529 hasConceptScore W2771590529C153180895 @default.
- W2771590529 hasConceptScore W2771590529C154945302 @default.
- W2771590529 hasConceptScore W2771590529C2776151529 @default.
- W2771590529 hasConceptScore W2771590529C2776401178 @default.
- W2771590529 hasConceptScore W2771590529C2778755073 @default.
- W2771590529 hasConceptScore W2771590529C2780297707 @default.
- W2771590529 hasConceptScore W2771590529C2781238097 @default.