Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771596807> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2771596807 abstract "Predicting highrisk vascular diseases is a significant issue in the medical domain. Most predicting methods predict the prognosis of patients from pathological and radiological measurements, which are expensive and require much time to be analyzed. Here we propose deep attention models that predict the onset of the high risky vascular disease from symbolic medical histories sequence of hypertension patients such as ICD-10 and pharmacy codes only, Medical History-based Prediction using Attention Network (MeHPAN). We demonstrate two types of attention models based on 1) bidirectional gated recurrent unit (R-MeHPAN) and 2) 1D convolutional multilayer model (C-MeHPAN). Two MeHPAN models are evaluated on approximately 50,000 hypertension patients with respect to precision, recall, f1-measure and area under the curve (AUC). Experimental results show that our MeHPAN methods outperform standard classification models. Comparing two MeHPANs, R-MeHPAN provides more better discriminative capability with respect to all metrics while C-MeHPAN presents much shorter training time with competitive accuracy." @default.
- W2771596807 created "2017-12-22" @default.
- W2771596807 creator A5003862414 @default.
- W2771596807 creator A5021354255 @default.
- W2771596807 creator A5022133103 @default.
- W2771596807 creator A5023081598 @default.
- W2771596807 creator A5055587379 @default.
- W2771596807 creator A5074393185 @default.
- W2771596807 date "2017-11-30" @default.
- W2771596807 modified "2023-09-27" @default.
- W2771596807 title "Highrisk Prediction from Electronic Medical Records via Deep Attention Networks." @default.
- W2771596807 cites W1514535095 @default.
- W2771596807 cites W1924770834 @default.
- W2771596807 cites W2069517582 @default.
- W2771596807 cites W2125065061 @default.
- W2771596807 cites W2193413348 @default.
- W2771596807 cites W2323929895 @default.
- W2771596807 cites W2510938745 @default.
- W2771596807 cites W2511730936 @default.
- W2771596807 cites W2534500022 @default.
- W2771596807 cites W2567070169 @default.
- W2771596807 cites W2597655663 @default.
- W2771596807 cites W2613904329 @default.
- W2771596807 cites W2619368999 @default.
- W2771596807 cites W2949541494 @default.
- W2771596807 cites W2951433694 @default.
- W2771596807 cites W2963271116 @default.
- W2771596807 cites W2963739921 @default.
- W2771596807 hasPublicationYear "2017" @default.
- W2771596807 type Work @default.
- W2771596807 sameAs 2771596807 @default.
- W2771596807 citedByCount "2" @default.
- W2771596807 countsByYear W27715968072018 @default.
- W2771596807 countsByYear W27715968072019 @default.
- W2771596807 crossrefType "posted-content" @default.
- W2771596807 hasAuthorship W2771596807A5003862414 @default.
- W2771596807 hasAuthorship W2771596807A5021354255 @default.
- W2771596807 hasAuthorship W2771596807A5022133103 @default.
- W2771596807 hasAuthorship W2771596807A5023081598 @default.
- W2771596807 hasAuthorship W2771596807A5055587379 @default.
- W2771596807 hasAuthorship W2771596807A5074393185 @default.
- W2771596807 hasConcept C100660578 @default.
- W2771596807 hasConcept C108583219 @default.
- W2771596807 hasConcept C119857082 @default.
- W2771596807 hasConcept C126322002 @default.
- W2771596807 hasConcept C154945302 @default.
- W2771596807 hasConcept C15744967 @default.
- W2771596807 hasConcept C180747234 @default.
- W2771596807 hasConcept C195910791 @default.
- W2771596807 hasConcept C206179267 @default.
- W2771596807 hasConcept C41008148 @default.
- W2771596807 hasConcept C71924100 @default.
- W2771596807 hasConcept C81363708 @default.
- W2771596807 hasConcept C97931131 @default.
- W2771596807 hasConceptScore W2771596807C100660578 @default.
- W2771596807 hasConceptScore W2771596807C108583219 @default.
- W2771596807 hasConceptScore W2771596807C119857082 @default.
- W2771596807 hasConceptScore W2771596807C126322002 @default.
- W2771596807 hasConceptScore W2771596807C154945302 @default.
- W2771596807 hasConceptScore W2771596807C15744967 @default.
- W2771596807 hasConceptScore W2771596807C180747234 @default.
- W2771596807 hasConceptScore W2771596807C195910791 @default.
- W2771596807 hasConceptScore W2771596807C206179267 @default.
- W2771596807 hasConceptScore W2771596807C41008148 @default.
- W2771596807 hasConceptScore W2771596807C71924100 @default.
- W2771596807 hasConceptScore W2771596807C81363708 @default.
- W2771596807 hasConceptScore W2771596807C97931131 @default.
- W2771596807 hasLocation W27715968071 @default.
- W2771596807 hasOpenAccess W2771596807 @default.
- W2771596807 hasPrimaryLocation W27715968071 @default.
- W2771596807 hasRelatedWork W2064675550 @default.
- W2771596807 hasRelatedWork W2396881363 @default.
- W2771596807 hasRelatedWork W2404901863 @default.
- W2771596807 hasRelatedWork W2471111921 @default.
- W2771596807 hasRelatedWork W2510175015 @default.
- W2771596807 hasRelatedWork W2518582440 @default.
- W2771596807 hasRelatedWork W2538637016 @default.
- W2771596807 hasRelatedWork W2601264762 @default.
- W2771596807 hasRelatedWork W2787461457 @default.
- W2771596807 hasRelatedWork W2888788502 @default.
- W2771596807 hasRelatedWork W2985962305 @default.
- W2771596807 hasRelatedWork W2988998929 @default.
- W2771596807 hasRelatedWork W2989335918 @default.
- W2771596807 hasRelatedWork W2993068218 @default.
- W2771596807 hasRelatedWork W3093782955 @default.
- W2771596807 hasRelatedWork W3099136959 @default.
- W2771596807 hasRelatedWork W3099894463 @default.
- W2771596807 hasRelatedWork W3159345519 @default.
- W2771596807 hasRelatedWork W3180967853 @default.
- W2771596807 hasRelatedWork W3210370552 @default.
- W2771596807 isParatext "false" @default.
- W2771596807 isRetracted "false" @default.
- W2771596807 magId "2771596807" @default.
- W2771596807 workType "article" @default.