Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771640894> ?p ?o ?g. }
- W2771640894 endingPage "395" @default.
- W2771640894 startingPage "389" @default.
- W2771640894 abstract "It remains a great challenge to achieve sufficient cancer classification accuracy with the entire set of genes, due to the high dimensions, small sample size, and big noise of gene expression data. We thus proposed a hybrid gene selection method, Information Gain-Support Vector Machine (IG-SVM) in this study. IG was initially employed to filter irrelevant and redundant genes. Then, further removal of redundant genes was performed using SVM to eliminate the noise in the datasets more effectively. Finally, the informative genes selected by IG-SVM served as the input for the LIBSVM classifier. Compared to other related algorithms, IG-SVM showed the highest classification accuracy and superior performance as evaluated using five cancer gene expression datasets based on a few selected genes. As an example, IG-SVM achieved a classification accuracy of 90.32% for colon cancer, which is difficult to be accurately classified, only based on three genes including CSRP1, MYL9, and GUCA2B." @default.
- W2771640894 created "2017-12-22" @default.
- W2771640894 creator A5009279856 @default.
- W2771640894 creator A5069032931 @default.
- W2771640894 creator A5079316816 @default.
- W2771640894 creator A5086969931 @default.
- W2771640894 date "2017-12-01" @default.
- W2771640894 modified "2023-10-18" @default.
- W2771640894 title "Hybrid Method Based on Information Gain and Support Vector Machine for Gene Selection in Cancer Classification" @default.
- W2771640894 cites W1152813626 @default.
- W2771640894 cites W1515195996 @default.
- W2771640894 cites W1640900830 @default.
- W2771640894 cites W1906225032 @default.
- W2771640894 cites W1966171228 @default.
- W2771640894 cites W2006260073 @default.
- W2771640894 cites W2008276243 @default.
- W2771640894 cites W2010993344 @default.
- W2771640894 cites W2016184291 @default.
- W2771640894 cites W2036949343 @default.
- W2771640894 cites W2046670731 @default.
- W2771640894 cites W2051725773 @default.
- W2771640894 cites W2058962978 @default.
- W2771640894 cites W2068880110 @default.
- W2771640894 cites W2092389700 @default.
- W2771640894 cites W2108728387 @default.
- W2771640894 cites W2109363337 @default.
- W2771640894 cites W2127824649 @default.
- W2771640894 cites W2129659619 @default.
- W2771640894 cites W2139392222 @default.
- W2771640894 cites W2140077863 @default.
- W2771640894 cites W2142450026 @default.
- W2771640894 cites W2149561943 @default.
- W2771640894 cites W2150630892 @default.
- W2771640894 cites W2159941442 @default.
- W2771640894 cites W2167101736 @default.
- W2771640894 cites W2216220193 @default.
- W2771640894 cites W2320789434 @default.
- W2771640894 cites W2325835248 @default.
- W2771640894 cites W2346678167 @default.
- W2771640894 cites W2417018212 @default.
- W2771640894 cites W2511481201 @default.
- W2771640894 cites W2583674333 @default.
- W2771640894 cites W2586619822 @default.
- W2771640894 cites W2586967568 @default.
- W2771640894 cites W2605082672 @default.
- W2771640894 cites W2613665723 @default.
- W2771640894 cites W2614079263 @default.
- W2771640894 cites W2757302867 @default.
- W2771640894 cites W4239510810 @default.
- W2771640894 cites W4249295724 @default.
- W2771640894 cites W600208884 @default.
- W2771640894 cites W2177483317 @default.
- W2771640894 doi "https://doi.org/10.1016/j.gpb.2017.08.002" @default.
- W2771640894 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5828665" @default.
- W2771640894 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29246519" @default.
- W2771640894 hasPublicationYear "2017" @default.
- W2771640894 type Work @default.
- W2771640894 sameAs 2771640894 @default.
- W2771640894 citedByCount "74" @default.
- W2771640894 countsByYear W27716408942018 @default.
- W2771640894 countsByYear W27716408942019 @default.
- W2771640894 countsByYear W27716408942020 @default.
- W2771640894 countsByYear W27716408942021 @default.
- W2771640894 countsByYear W27716408942022 @default.
- W2771640894 countsByYear W27716408942023 @default.
- W2771640894 crossrefType "journal-article" @default.
- W2771640894 hasAuthorship W2771640894A5009279856 @default.
- W2771640894 hasAuthorship W2771640894A5069032931 @default.
- W2771640894 hasAuthorship W2771640894A5079316816 @default.
- W2771640894 hasAuthorship W2771640894A5086969931 @default.
- W2771640894 hasBestOaLocation W27716408941 @default.
- W2771640894 hasConcept C104317684 @default.
- W2771640894 hasConcept C115961682 @default.
- W2771640894 hasConcept C119857082 @default.
- W2771640894 hasConcept C12267149 @default.
- W2771640894 hasConcept C124101348 @default.
- W2771640894 hasConcept C148483581 @default.
- W2771640894 hasConcept C150194340 @default.
- W2771640894 hasConcept C153180895 @default.
- W2771640894 hasConcept C154945302 @default.
- W2771640894 hasConcept C2984324147 @default.
- W2771640894 hasConcept C41008148 @default.
- W2771640894 hasConcept C54355233 @default.
- W2771640894 hasConcept C81917197 @default.
- W2771640894 hasConcept C8415881 @default.
- W2771640894 hasConcept C86803240 @default.
- W2771640894 hasConcept C95623464 @default.
- W2771640894 hasConcept C99498987 @default.
- W2771640894 hasConceptScore W2771640894C104317684 @default.
- W2771640894 hasConceptScore W2771640894C115961682 @default.
- W2771640894 hasConceptScore W2771640894C119857082 @default.
- W2771640894 hasConceptScore W2771640894C12267149 @default.
- W2771640894 hasConceptScore W2771640894C124101348 @default.
- W2771640894 hasConceptScore W2771640894C148483581 @default.
- W2771640894 hasConceptScore W2771640894C150194340 @default.
- W2771640894 hasConceptScore W2771640894C153180895 @default.
- W2771640894 hasConceptScore W2771640894C154945302 @default.
- W2771640894 hasConceptScore W2771640894C2984324147 @default.