Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771668052> ?p ?o ?g. }
- W2771668052 endingPage "1257" @default.
- W2771668052 startingPage "1257" @default.
- W2771668052 abstract "Monitoring vegetation recovery typically requires ground measurements of vegetation height, which is labor-intensive and time-consuming. Recently, unmanned aerial vehicles (UAVs) have shown great promise for characterizing vegetation in a cost-efficient way, but the literature on specific methods and cost savings is scant. In this study, we surveyed vegetation height on seismic lines in Alberta’s Boreal Forest using a point-intercept sampling strategy, and compared them to height estimates derived from UAV-based photogrammetric point clouds. In order to derive UAV-based vegetation height, we tested three different approaches to estimate terrain elevation: (1) UAV_RTK, where photogrammetric point clouds were normalized using terrain measurements obtained from a real-time kinematic global navigation satellite system (RTK GNSS) surveys; (2) UAV_LiDAR, where photogrammetric data were normalized using pre-existing LiDAR (Light Detection and Ranging) data; and (3) UAV_UAV, where UAV photogrammetry data were used alone. Comparisons were done at two scales: point level (n = 1743) and site level (n = 30). The point-level root-mean-square errors (RMSEs) of UAV_RTK, UAV_LiDAR, and UAV_UAV were 28 cm, 31 cm, and 30 cm, respectively. The site-level RMSEs were 11 cm, 15 cm, and 8 cm, respectively. At the aggregated site level, we found that UAV photogrammetry could replace traditional field-based vegetation surveys of mean vegetation height across the range of conditions assessed in this study, with an RMSE less than 10 cm. Cost analysis indicates that using UAV-based point clouds is more cost-effective than traditional field vegetation surveys." @default.
- W2771668052 created "2017-12-22" @default.
- W2771668052 creator A5010885383 @default.
- W2771668052 creator A5028672336 @default.
- W2771668052 creator A5056032849 @default.
- W2771668052 creator A5076603431 @default.
- W2771668052 date "2017-12-03" @default.
- W2771668052 modified "2023-09-26" @default.
- W2771668052 title "Measuring Vegetation Height in Linear Disturbances in the Boreal Forest with UAV Photogrammetry" @default.
- W2771668052 cites W1522525389 @default.
- W2771668052 cites W1566532634 @default.
- W2771668052 cites W1791351279 @default.
- W2771668052 cites W1901176938 @default.
- W2771668052 cites W1939619463 @default.
- W2771668052 cites W1981527205 @default.
- W2771668052 cites W1994505276 @default.
- W2771668052 cites W1999601230 @default.
- W2771668052 cites W2001108422 @default.
- W2771668052 cites W2002008272 @default.
- W2771668052 cites W2019549520 @default.
- W2771668052 cites W2023081345 @default.
- W2771668052 cites W2027254180 @default.
- W2771668052 cites W2028901390 @default.
- W2771668052 cites W2034009752 @default.
- W2771668052 cites W2038685401 @default.
- W2771668052 cites W2077079430 @default.
- W2771668052 cites W2082278455 @default.
- W2771668052 cites W2091084944 @default.
- W2771668052 cites W2098742184 @default.
- W2771668052 cites W2122450383 @default.
- W2771668052 cites W2126032008 @default.
- W2771668052 cites W2153948492 @default.
- W2771668052 cites W2161428210 @default.
- W2771668052 cites W2169103225 @default.
- W2771668052 cites W2172900521 @default.
- W2771668052 cites W2229870314 @default.
- W2771668052 cites W2507823894 @default.
- W2771668052 cites W2608264083 @default.
- W2771668052 cites W2615436872 @default.
- W2771668052 cites W2754842311 @default.
- W2771668052 doi "https://doi.org/10.3390/rs9121257" @default.
- W2771668052 hasPublicationYear "2017" @default.
- W2771668052 type Work @default.
- W2771668052 sameAs 2771668052 @default.
- W2771668052 citedByCount "54" @default.
- W2771668052 countsByYear W27716680522018 @default.
- W2771668052 countsByYear W27716680522019 @default.
- W2771668052 countsByYear W27716680522020 @default.
- W2771668052 countsByYear W27716680522021 @default.
- W2771668052 countsByYear W27716680522022 @default.
- W2771668052 countsByYear W27716680522023 @default.
- W2771668052 crossrefType "journal-article" @default.
- W2771668052 hasAuthorship W2771668052A5010885383 @default.
- W2771668052 hasAuthorship W2771668052A5028672336 @default.
- W2771668052 hasAuthorship W2771668052A5056032849 @default.
- W2771668052 hasAuthorship W2771668052A5076603431 @default.
- W2771668052 hasBestOaLocation W27716680521 @default.
- W2771668052 hasConcept C117455697 @default.
- W2771668052 hasConcept C127313418 @default.
- W2771668052 hasConcept C131979681 @default.
- W2771668052 hasConcept C142724271 @default.
- W2771668052 hasConcept C14279187 @default.
- W2771668052 hasConcept C161840515 @default.
- W2771668052 hasConcept C181843262 @default.
- W2771668052 hasConcept C205649164 @default.
- W2771668052 hasConcept C2524010 @default.
- W2771668052 hasConcept C2776133958 @default.
- W2771668052 hasConcept C31972630 @default.
- W2771668052 hasConcept C33923547 @default.
- W2771668052 hasConcept C37054046 @default.
- W2771668052 hasConcept C39432304 @default.
- W2771668052 hasConcept C41008148 @default.
- W2771668052 hasConcept C51399673 @default.
- W2771668052 hasConcept C58640448 @default.
- W2771668052 hasConcept C60229501 @default.
- W2771668052 hasConcept C62649853 @default.
- W2771668052 hasConcept C71924100 @default.
- W2771668052 hasConcept C76155785 @default.
- W2771668052 hasConcept C93103318 @default.
- W2771668052 hasConceptScore W2771668052C117455697 @default.
- W2771668052 hasConceptScore W2771668052C127313418 @default.
- W2771668052 hasConceptScore W2771668052C131979681 @default.
- W2771668052 hasConceptScore W2771668052C142724271 @default.
- W2771668052 hasConceptScore W2771668052C14279187 @default.
- W2771668052 hasConceptScore W2771668052C161840515 @default.
- W2771668052 hasConceptScore W2771668052C181843262 @default.
- W2771668052 hasConceptScore W2771668052C205649164 @default.
- W2771668052 hasConceptScore W2771668052C2524010 @default.
- W2771668052 hasConceptScore W2771668052C2776133958 @default.
- W2771668052 hasConceptScore W2771668052C31972630 @default.
- W2771668052 hasConceptScore W2771668052C33923547 @default.
- W2771668052 hasConceptScore W2771668052C37054046 @default.
- W2771668052 hasConceptScore W2771668052C39432304 @default.
- W2771668052 hasConceptScore W2771668052C41008148 @default.
- W2771668052 hasConceptScore W2771668052C51399673 @default.
- W2771668052 hasConceptScore W2771668052C58640448 @default.
- W2771668052 hasConceptScore W2771668052C60229501 @default.
- W2771668052 hasConceptScore W2771668052C62649853 @default.