Matches in SemOpenAlex for { <https://semopenalex.org/work/W2771851372> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2771851372 endingPage "368" @default.
- W2771851372 startingPage "337" @default.
- W2771851372 abstract "This chapter describes a new intelligent platform for learning optimal designs of morphing wings based on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics (CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with Spalart-Allmaras turbulence model) that computes flow over a tri-element inboard NASA Generic Transport Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice. To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology, which is based on manifold regularization techniques. A reasonable space of CFD solutions was populated and then the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where there were no CFD solutions available. The SSL methodology in conjunction with an elastodynamic solver (FiDDLE) was demonstrated in an earlier study involving structural health monitoring. These CFD-SSL methodologies define the new intelligent platform that forms the basis for our search for optimal design of wings. Although the present platform can be used in various other design and operational problems in engineering, this chapter focuses on the high-lift study of the VCK-VCCTEF system. Top few candidate design configurations were identified by solving the CFD problem in a small subset of the design space. The SSL component was trained on the design space, and was then used in a predictive mode to populate a selected set of test points outside of the given design space. The new design test space thus populated was evaluated by using the CFD component by determining the error between the SSL predictions and the true (CFD) solutions, which was found to be small. This demonstrates the proposed CFD-SSL methodologies for isolating the best design of the VCK-VCCTEF system, and it holds promise for quantitatively identifying best designs of flight systems, in general." @default.
- W2771851372 created "2017-12-22" @default.
- W2771851372 creator A5026216458 @default.
- W2771851372 creator A5059820898 @default.
- W2771851372 date "2018-01-01" @default.
- W2771851372 modified "2023-09-26" @default.
- W2771851372 title "Semisupervised Learning of Lift Optimization of Multi-Element Three-Segment Variable Camber Airfoil" @default.
- W2771851372 cites W125167016 @default.
- W2771851372 cites W13765794 @default.
- W2771851372 cites W1489391022 @default.
- W2771851372 cites W1528130211 @default.
- W2771851372 cites W1535116423 @default.
- W2771851372 cites W1570024512 @default.
- W2771851372 cites W1575809242 @default.
- W2771851372 cites W1644864267 @default.
- W2771851372 cites W1967079282 @default.
- W2771851372 cites W1974018186 @default.
- W2771851372 cites W1974204180 @default.
- W2771851372 cites W1978612064 @default.
- W2771851372 cites W1987761485 @default.
- W2771851372 cites W2011274429 @default.
- W2771851372 cites W2036449508 @default.
- W2771851372 cites W2037831800 @default.
- W2771851372 cites W2041750090 @default.
- W2771851372 cites W2049777185 @default.
- W2771851372 cites W2050675940 @default.
- W2771851372 cites W2069755704 @default.
- W2771851372 cites W209085883 @default.
- W2771851372 cites W2095473904 @default.
- W2771851372 cites W2101623441 @default.
- W2771851372 cites W2115484804 @default.
- W2771851372 cites W2119696713 @default.
- W2771851372 cites W2167108850 @default.
- W2771851372 cites W2167955381 @default.
- W2771851372 cites W2314988599 @default.
- W2771851372 cites W2318897383 @default.
- W2771851372 cites W2319751712 @default.
- W2771851372 cites W2323830807 @default.
- W2771851372 cites W3137722765 @default.
- W2771851372 cites W4251772280 @default.
- W2771851372 doi "https://doi.org/10.2514/5.9781624104794.0337.0368" @default.
- W2771851372 hasPublicationYear "2018" @default.
- W2771851372 type Work @default.
- W2771851372 sameAs 2771851372 @default.
- W2771851372 citedByCount "2" @default.
- W2771851372 countsByYear W27718513722018 @default.
- W2771851372 countsByYear W27718513722021 @default.
- W2771851372 crossrefType "book-chapter" @default.
- W2771851372 hasAuthorship W2771851372A5026216458 @default.
- W2771851372 hasAuthorship W2771851372A5059820898 @default.
- W2771851372 hasConcept C112124176 @default.
- W2771851372 hasConcept C119857082 @default.
- W2771851372 hasConcept C127413603 @default.
- W2771851372 hasConcept C134306372 @default.
- W2771851372 hasConcept C139002025 @default.
- W2771851372 hasConcept C146978453 @default.
- W2771851372 hasConcept C182365436 @default.
- W2771851372 hasConcept C33923547 @default.
- W2771851372 hasConcept C41008148 @default.
- W2771851372 hasConcept C60053565 @default.
- W2771851372 hasConcept C66938386 @default.
- W2771851372 hasConceptScore W2771851372C112124176 @default.
- W2771851372 hasConceptScore W2771851372C119857082 @default.
- W2771851372 hasConceptScore W2771851372C127413603 @default.
- W2771851372 hasConceptScore W2771851372C134306372 @default.
- W2771851372 hasConceptScore W2771851372C139002025 @default.
- W2771851372 hasConceptScore W2771851372C146978453 @default.
- W2771851372 hasConceptScore W2771851372C182365436 @default.
- W2771851372 hasConceptScore W2771851372C33923547 @default.
- W2771851372 hasConceptScore W2771851372C41008148 @default.
- W2771851372 hasConceptScore W2771851372C60053565 @default.
- W2771851372 hasConceptScore W2771851372C66938386 @default.
- W2771851372 hasLocation W27718513721 @default.
- W2771851372 hasOpenAccess W2771851372 @default.
- W2771851372 hasPrimaryLocation W27718513721 @default.
- W2771851372 hasRelatedWork W1975843490 @default.
- W2771851372 hasRelatedWork W1997385172 @default.
- W2771851372 hasRelatedWork W2355076776 @default.
- W2771851372 hasRelatedWork W3042319753 @default.
- W2771851372 hasRelatedWork W3093755945 @default.
- W2771851372 hasRelatedWork W3164086224 @default.
- W2771851372 hasRelatedWork W4281981508 @default.
- W2771851372 hasRelatedWork W2505454882 @default.
- W2771851372 hasRelatedWork W2953109086 @default.
- W2771851372 hasRelatedWork W812654998 @default.
- W2771851372 isParatext "false" @default.
- W2771851372 isRetracted "false" @default.
- W2771851372 magId "2771851372" @default.
- W2771851372 workType "book-chapter" @default.