Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772018249> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2772018249 abstract "Strain engineering to control the magnetic and magnetotransport properties of La 0.67 Sr 0.33 MnO 3 thin films F. Yang 1 , N. Kemik 1 , M.D. Biegalski 2 , H.M. Christen 2 , E. Arenholz 3 , Y. Takamura 1 Department of Chemical Engineering and Materials Science, University of California–Davis, Davis, California 95616, USA Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA This work studies the control of the magnetic and magnetotransport properties of La 0.67 Sr 0.33 MnO 3 thin films through strain engineering. The strain state is characterized by the tetragonal distortion (c/a ratio), which can be varied continuously between a compressive strain of 1.005 to a tensile strain of 0.952 by changing the type of substrate, the growth rate, and the presence of an underlying La 0.67 Sr 0.33 FeO 3 buffer layer. Increasing tensile tetragonal distortion of the La 0.67 Sr 0.33 MnO 3 thin film decreases the saturation magnetization, changes the temperature dependence of the resistivity and magnetoresistance, and increases the resistivity by several orders of magnitude. The perovskite oxides have been widely investigated in recent years since they possess various important physical properties such as ferromagnetism, superconductivity, and ferroelectricity. 1 In particular, La 0.67 Sr 0.33 MnO 3 (LSMO) is an attractive candidate for spintronic devices 2,3 because it displays colossal magnetoresistance (CMR) and half-metallicity, and possesses a Curie temperature, T C, above room temperature (~ 360 K). 4,5 In this material, the T C marks the transition between the ferromagnetic (FM)/ metallic and the paramagnetic (PM)/ insulating states, as well as the peak in the CMR. This correlation between the electrical and magnetic properties is explained by the double-exchange mechanism 6,7 which involves the hopping of electrons between Mn 3+ and Mn 4+ ions with parallel spin through a bridging O 2- ion. Due to the strong interactions between the charge and orbital degrees of freedom, these properties can be manipulated by a number of different parameters, including external pressure 8 , oxygen stoichiometry 9 , and the doping level. 10,11 With thin films, the epitaxial strain imposed from the underlying substrate provides an additional tuning parameter for the functional properties. It has been shown that coherently strained LSMO thin films can be grown on a wide range of different single crystal oxide substrates and that the resulting strain dramatically impacts the magnetic and magnetotransport properties of the thin films. 12-16 The strain state can be characterized by the tetragonal distortion, defined as the c/a ratio, where the in-plane lattice parameter of the film, a, is dictated by the lattice parameter of the substrate, and the out-of-plane lattice parameter, c, is allowed to respond accordingly. For example, Kwon et al. reported that an in-plane easy magnetization direction is observed in tensile-strained films (c/a ratio 1) grown on (001)-oriented LaAlO 3 (LAO) substrates exhibit an out-of-plane easy axis. 12 Furthermore, it has been shown that the magnitude of this tetragonal distortion depends on the crystallographic orientation of the film and the substrate. 13,14,17 Fully strained LSMO films grown on (110)-oriented substrates show enhanced electrical and magnetic properties due to the reduced tetragonal distortion relative to the films grown on (001)-oriented substrates. Previously, Takamura et al. 15 showed that a dramatic change in the properties of LSMO films occurred as the c/a ratio decreased from 0.984 to 0.962. However, the strain states were limited to discrete values corresponding to the lattice parameters of the commercially available single crystal oxide substrates, STO and DyScO 3 , respectively, therefore intermediate strain states were not available. One alternative involves using piezoelectric substrates such as Pb(Mg 1/3 Nb 2/3 ) 0.72 Ti 0.28 O 3 , which allow for the dynamic modulation of the strain by varying the applied electric field. 16 However, the crystalline quality of the LSMO films grown on these piezoelectric substrates suffers due to the large lattice mismatch and the rhombohedral structure of the substrate. Furthermore, the brittleness of the substrates limits the practical range of strain that can be attained. In this work, we demonstrate the ability to control the epitaxial strain of LSMO thin films continuously over a large range through the choice of substrate, the growth rate, and the presence of an underlying La 0.7 Sr 0.3 FeO 3 (LSFO) buffer layer. Bulk LSMO has a rhombohedral perovskite structure which can be approximated as" @default.
- W2772018249 created "2017-12-22" @default.
- W2772018249 creator A5042916125 @default.
- W2772018249 date "2010-09-21" @default.
- W2772018249 modified "2023-09-27" @default.
- W2772018249 title "Strain engineering to control the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films" @default.
- W2772018249 hasPublicationYear "2010" @default.
- W2772018249 type Work @default.
- W2772018249 sameAs 2772018249 @default.
- W2772018249 citedByCount "0" @default.
- W2772018249 crossrefType "journal-article" @default.
- W2772018249 hasAuthorship W2772018249A5042916125 @default.
- W2772018249 hasConcept C115260700 @default.
- W2772018249 hasConcept C115624301 @default.
- W2772018249 hasConcept C117958382 @default.
- W2772018249 hasConcept C121332964 @default.
- W2772018249 hasConcept C121545928 @default.
- W2772018249 hasConcept C149288129 @default.
- W2772018249 hasConcept C170751736 @default.
- W2772018249 hasConcept C171250308 @default.
- W2772018249 hasConcept C185592680 @default.
- W2772018249 hasConcept C19067145 @default.
- W2772018249 hasConcept C192562407 @default.
- W2772018249 hasConcept C26873012 @default.
- W2772018249 hasConcept C32546565 @default.
- W2772018249 hasConcept C62520636 @default.
- W2772018249 hasConcept C63648874 @default.
- W2772018249 hasConcept C8010536 @default.
- W2772018249 hasConcept C80487327 @default.
- W2772018249 hasConcept C82217956 @default.
- W2772018249 hasConcept C84154488 @default.
- W2772018249 hasConceptScore W2772018249C115260700 @default.
- W2772018249 hasConceptScore W2772018249C115624301 @default.
- W2772018249 hasConceptScore W2772018249C117958382 @default.
- W2772018249 hasConceptScore W2772018249C121332964 @default.
- W2772018249 hasConceptScore W2772018249C121545928 @default.
- W2772018249 hasConceptScore W2772018249C149288129 @default.
- W2772018249 hasConceptScore W2772018249C170751736 @default.
- W2772018249 hasConceptScore W2772018249C171250308 @default.
- W2772018249 hasConceptScore W2772018249C185592680 @default.
- W2772018249 hasConceptScore W2772018249C19067145 @default.
- W2772018249 hasConceptScore W2772018249C192562407 @default.
- W2772018249 hasConceptScore W2772018249C26873012 @default.
- W2772018249 hasConceptScore W2772018249C32546565 @default.
- W2772018249 hasConceptScore W2772018249C62520636 @default.
- W2772018249 hasConceptScore W2772018249C63648874 @default.
- W2772018249 hasConceptScore W2772018249C8010536 @default.
- W2772018249 hasConceptScore W2772018249C80487327 @default.
- W2772018249 hasConceptScore W2772018249C82217956 @default.
- W2772018249 hasConceptScore W2772018249C84154488 @default.
- W2772018249 hasLocation W27720182491 @default.
- W2772018249 hasOpenAccess W2772018249 @default.
- W2772018249 hasPrimaryLocation W27720182491 @default.
- W2772018249 hasRelatedWork W1546656028 @default.
- W2772018249 hasRelatedWork W1559334429 @default.
- W2772018249 hasRelatedWork W1578057614 @default.
- W2772018249 hasRelatedWork W1972319742 @default.
- W2772018249 hasRelatedWork W1999281339 @default.
- W2772018249 hasRelatedWork W2030300258 @default.
- W2772018249 hasRelatedWork W2042694140 @default.
- W2772018249 hasRelatedWork W2048388936 @default.
- W2772018249 hasRelatedWork W2083648623 @default.
- W2772018249 hasRelatedWork W2085238089 @default.
- W2772018249 hasRelatedWork W2107714993 @default.
- W2772018249 hasRelatedWork W2133516896 @default.
- W2772018249 hasRelatedWork W2156032645 @default.
- W2772018249 hasRelatedWork W2334022703 @default.
- W2772018249 hasRelatedWork W2389153998 @default.
- W2772018249 hasRelatedWork W2530280249 @default.
- W2772018249 hasRelatedWork W2770113729 @default.
- W2772018249 hasRelatedWork W2947957101 @default.
- W2772018249 hasRelatedWork W3022081585 @default.
- W2772018249 hasRelatedWork W3186820701 @default.
- W2772018249 isParatext "false" @default.
- W2772018249 isRetracted "false" @default.
- W2772018249 magId "2772018249" @default.
- W2772018249 workType "article" @default.