Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772024545> ?p ?o ?g. }
- W2772024545 endingPage "114" @default.
- W2772024545 startingPage "100" @default.
- W2772024545 abstract "Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by loss of memory and reduction in cognitive functions due to progressive degeneration of neurons and their connections, eventually leading to death. In this paper, we consider the problem of simultaneously predicting several different cognitive scores associated with categorizing subjects as normal, mild cognitive impairment (MCI), or Alzheimer's disease (AD) in a multi-task learning framework using features extracted from brain images obtained from ADNI (Alzheimer's Disease Neuroimaging Initiative). To solve the problem, we present a multi-task sparse group lasso (MT-SGL) framework, which estimates sparse features coupled across tasks, and can work with loss functions associated with any Generalized Linear Models. Through comparisons with a variety of baseline models using multiple evaluation metrics, we illustrate the promising predictive performance of MT-SGL on ADNI along with its ability to identify brain regions more likely to help the characterization Alzheimer's disease progression." @default.
- W2772024545 created "2017-12-22" @default.
- W2772024545 creator A5001741874 @default.
- W2772024545 creator A5014459472 @default.
- W2772024545 creator A5035352293 @default.
- W2772024545 creator A5043267366 @default.
- W2772024545 creator A5054322583 @default.
- W2772024545 creator A5085833803 @default.
- W2772024545 date "2018-06-01" @default.
- W2772024545 modified "2023-10-17" @default.
- W2772024545 title "Modeling Alzheimer's disease cognitive scores using multi-task sparse group lasso" @default.
- W2772024545 cites W1969455604 @default.
- W2772024545 cites W1973823738 @default.
- W2772024545 cites W1987624864 @default.
- W2772024545 cites W2000292092 @default.
- W2772024545 cites W2001477615 @default.
- W2772024545 cites W2001648635 @default.
- W2772024545 cites W2004293194 @default.
- W2772024545 cites W2004347786 @default.
- W2772024545 cites W2016358822 @default.
- W2772024545 cites W2031425398 @default.
- W2772024545 cites W2031967811 @default.
- W2772024545 cites W2038082462 @default.
- W2772024545 cites W2039018899 @default.
- W2772024545 cites W2061879449 @default.
- W2772024545 cites W2064222308 @default.
- W2772024545 cites W2065180801 @default.
- W2772024545 cites W2074693857 @default.
- W2772024545 cites W2079549965 @default.
- W2772024545 cites W2084358449 @default.
- W2772024545 cites W2092789470 @default.
- W2772024545 cites W2100556411 @default.
- W2772024545 cites W2101135654 @default.
- W2772024545 cites W2103481737 @default.
- W2772024545 cites W2105086806 @default.
- W2772024545 cites W2106398669 @default.
- W2772024545 cites W2111552401 @default.
- W2772024545 cites W2121369614 @default.
- W2772024545 cites W2133703021 @default.
- W2772024545 cites W2138019504 @default.
- W2772024545 cites W2138265962 @default.
- W2772024545 cites W2143104527 @default.
- W2772024545 cites W2151721316 @default.
- W2772024545 cites W2151920318 @default.
- W2772024545 cites W2154865814 @default.
- W2772024545 cites W2155963684 @default.
- W2772024545 cites W2157270343 @default.
- W2772024545 cites W2157848968 @default.
- W2772024545 cites W2167732364 @default.
- W2772024545 cites W2171405125 @default.
- W2772024545 cites W2286206973 @default.
- W2772024545 cites W2290144698 @default.
- W2772024545 cites W2525613883 @default.
- W2772024545 cites W2562162676 @default.
- W2772024545 cites W281036081 @default.
- W2772024545 cites W4244393449 @default.
- W2772024545 doi "https://doi.org/10.1016/j.compmedimag.2017.11.001" @default.
- W2772024545 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29602022" @default.
- W2772024545 hasPublicationYear "2018" @default.
- W2772024545 type Work @default.
- W2772024545 sameAs 2772024545 @default.
- W2772024545 citedByCount "18" @default.
- W2772024545 countsByYear W27720245452018 @default.
- W2772024545 countsByYear W27720245452019 @default.
- W2772024545 countsByYear W27720245452020 @default.
- W2772024545 countsByYear W27720245452021 @default.
- W2772024545 countsByYear W27720245452022 @default.
- W2772024545 countsByYear W27720245452023 @default.
- W2772024545 crossrefType "journal-article" @default.
- W2772024545 hasAuthorship W2772024545A5001741874 @default.
- W2772024545 hasAuthorship W2772024545A5014459472 @default.
- W2772024545 hasAuthorship W2772024545A5035352293 @default.
- W2772024545 hasAuthorship W2772024545A5043267366 @default.
- W2772024545 hasAuthorship W2772024545A5054322583 @default.
- W2772024545 hasAuthorship W2772024545A5085833803 @default.
- W2772024545 hasConcept C119653847 @default.
- W2772024545 hasConcept C119857082 @default.
- W2772024545 hasConcept C136764020 @default.
- W2772024545 hasConcept C142724271 @default.
- W2772024545 hasConcept C154945302 @default.
- W2772024545 hasConcept C15744967 @default.
- W2772024545 hasConcept C162324750 @default.
- W2772024545 hasConcept C169760540 @default.
- W2772024545 hasConcept C169900460 @default.
- W2772024545 hasConcept C180747234 @default.
- W2772024545 hasConcept C187736073 @default.
- W2772024545 hasConcept C2778373026 @default.
- W2772024545 hasConcept C2779134260 @default.
- W2772024545 hasConcept C2780451532 @default.
- W2772024545 hasConcept C2984915365 @default.
- W2772024545 hasConcept C37616216 @default.
- W2772024545 hasConcept C41008148 @default.
- W2772024545 hasConcept C502032728 @default.
- W2772024545 hasConcept C58693492 @default.
- W2772024545 hasConcept C71924100 @default.
- W2772024545 hasConceptScore W2772024545C119653847 @default.
- W2772024545 hasConceptScore W2772024545C119857082 @default.
- W2772024545 hasConceptScore W2772024545C136764020 @default.