Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772025632> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2772025632 abstract "The flexibility of the Bayesian approach to account for covariates with measurement error is combined with semiparametric regression models for a class of continuous, discrete and mixed univariate response distributions with potentially all parameters depending on a structured additive predictor. Markov chain Monte Carlo enables a modular and numerically efficient implementation of Bayesian measurement error correction based on the imputation of unobserved error-free covariate values. We allow for very general measurement errors, including correlated replicates with heterogeneous variances. The proposal is first assessed by a simulation trial, then it is applied to the assessment of a soil-plant relationship crucial for implementing efficient agricultural management practices. Observations on multi-depth soil information forage ground-cover for a seven hectares Alfalfa stand in South Italy were obtained using sensors with very refined spatial resolution. Estimating a functional relation between ground-cover and soil with these data involves addressing issues linked to the spatial and temporal misalignment and the large data size. We propose a preliminary spatial interpolation on a lattice covering the field and subsequent analysis by a structured additive distributional regression model accounting for measurement error in the soil covariate. Results are interpreted and commented in connection to possible Alfalfa management strategies." @default.
- W2772025632 created "2017-12-22" @default.
- W2772025632 creator A5009871877 @default.
- W2772025632 creator A5013402443 @default.
- W2772025632 creator A5037330583 @default.
- W2772025632 creator A5045355522 @default.
- W2772025632 creator A5081770153 @default.
- W2772025632 creator A5085041409 @default.
- W2772025632 date "2017-11-29" @default.
- W2772025632 modified "2023-09-26" @default.
- W2772025632 title "Bayesian Measurement Error Correction in Structured Additive Distributional Regression with an Application to the Analysis of Sensor Data on Soil-Plant Variability" @default.
- W2772025632 cites W1512882103 @default.
- W2772025632 cites W1565842569 @default.
- W2772025632 cites W1898904249 @default.
- W2772025632 cites W1927327678 @default.
- W2772025632 cites W1998643818 @default.
- W2772025632 cites W2013915870 @default.
- W2772025632 cites W2014962173 @default.
- W2772025632 cites W2018275040 @default.
- W2772025632 cites W2022196329 @default.
- W2772025632 cites W2025720061 @default.
- W2772025632 cites W2036709573 @default.
- W2772025632 cites W2041004892 @default.
- W2772025632 cites W2052371530 @default.
- W2772025632 cites W2057765075 @default.
- W2772025632 cites W2069409480 @default.
- W2772025632 cites W2114199337 @default.
- W2772025632 cites W211639852 @default.
- W2772025632 cites W2123222757 @default.
- W2772025632 cites W2130902307 @default.
- W2772025632 cites W2134080536 @default.
- W2772025632 cites W2143022286 @default.
- W2772025632 cites W2143339960 @default.
- W2772025632 cites W2195938759 @default.
- W2772025632 cites W2232834219 @default.
- W2772025632 cites W2264049229 @default.
- W2772025632 cites W2336390940 @default.
- W2772025632 cites W2589849966 @default.
- W2772025632 cites W2765589550 @default.
- W2772025632 cites W604429516 @default.
- W2772025632 doi "https://doi.org/10.48550/arxiv.1711.10786" @default.
- W2772025632 hasPublicationYear "2017" @default.
- W2772025632 type Work @default.
- W2772025632 sameAs 2772025632 @default.
- W2772025632 citedByCount "0" @default.
- W2772025632 crossrefType "posted-content" @default.
- W2772025632 hasAuthorship W2772025632A5009871877 @default.
- W2772025632 hasAuthorship W2772025632A5013402443 @default.
- W2772025632 hasAuthorship W2772025632A5037330583 @default.
- W2772025632 hasAuthorship W2772025632A5045355522 @default.
- W2772025632 hasAuthorship W2772025632A5081770153 @default.
- W2772025632 hasAuthorship W2772025632A5085041409 @default.
- W2772025632 hasBestOaLocation W27720256321 @default.
- W2772025632 hasConcept C105795698 @default.
- W2772025632 hasConcept C107673813 @default.
- W2772025632 hasConcept C111350023 @default.
- W2772025632 hasConcept C119043178 @default.
- W2772025632 hasConcept C149782125 @default.
- W2772025632 hasConcept C152877465 @default.
- W2772025632 hasConcept C161584116 @default.
- W2772025632 hasConcept C19619285 @default.
- W2772025632 hasConcept C199163554 @default.
- W2772025632 hasConcept C33923547 @default.
- W2772025632 hasConcept C41008148 @default.
- W2772025632 hasConceptScore W2772025632C105795698 @default.
- W2772025632 hasConceptScore W2772025632C107673813 @default.
- W2772025632 hasConceptScore W2772025632C111350023 @default.
- W2772025632 hasConceptScore W2772025632C119043178 @default.
- W2772025632 hasConceptScore W2772025632C149782125 @default.
- W2772025632 hasConceptScore W2772025632C152877465 @default.
- W2772025632 hasConceptScore W2772025632C161584116 @default.
- W2772025632 hasConceptScore W2772025632C19619285 @default.
- W2772025632 hasConceptScore W2772025632C199163554 @default.
- W2772025632 hasConceptScore W2772025632C33923547 @default.
- W2772025632 hasConceptScore W2772025632C41008148 @default.
- W2772025632 hasLocation W27720256321 @default.
- W2772025632 hasLocation W27720256322 @default.
- W2772025632 hasOpenAccess W2772025632 @default.
- W2772025632 hasPrimaryLocation W27720256321 @default.
- W2772025632 hasRelatedWork W1725020537 @default.
- W2772025632 hasRelatedWork W1858985792 @default.
- W2772025632 hasRelatedWork W1989037482 @default.
- W2772025632 hasRelatedWork W2033490192 @default.
- W2772025632 hasRelatedWork W2087874164 @default.
- W2772025632 hasRelatedWork W2114467513 @default.
- W2772025632 hasRelatedWork W3124118004 @default.
- W2772025632 hasRelatedWork W4255876030 @default.
- W2772025632 hasRelatedWork W4297435300 @default.
- W2772025632 hasRelatedWork W4366821931 @default.
- W2772025632 isParatext "false" @default.
- W2772025632 isRetracted "false" @default.
- W2772025632 magId "2772025632" @default.
- W2772025632 workType "article" @default.