Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772027160> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2772027160 abstract "Exponential growth in electronic health record (EHR) data has resulted in new opportunities and urgent needs to discover meaningful data-driven representations and patterns of diseases, i.e., computational phenotyping. Recent success and development of deep learning provides promising solutions to the problem of prediction and feature discovery tasks, while lots of challenges still remain and prevent people from applying standard deep learning models directly. In this paper, we discussed three key challenges in this field: how to deal with missing data, how to build scalable models, and how to get interpretations of features and models. We proposed novel and effective deep learning solutions to each of them respectively. All proposed solutions are evaluated on several real-world health care datasets and experimental results demonstrated their superiority over existing baselines." @default.
- W2772027160 created "2017-12-22" @default.
- W2772027160 creator A5017164999 @default.
- W2772027160 creator A5079044416 @default.
- W2772027160 date "2017-11-01" @default.
- W2772027160 modified "2023-10-17" @default.
- W2772027160 title "Deep Learning Solutions to Computational Phenotyping in Health Care" @default.
- W2772027160 cites W1603806745 @default.
- W2772027160 cites W1967710271 @default.
- W2772027160 cites W1969116741 @default.
- W2772027160 cites W1977512462 @default.
- W2772027160 cites W1995687988 @default.
- W2772027160 cites W1998249118 @default.
- W2772027160 cites W2003927776 @default.
- W2772027160 cites W2025023551 @default.
- W2772027160 cites W2040304075 @default.
- W2772027160 cites W2042918383 @default.
- W2772027160 cites W2042954874 @default.
- W2772027160 cites W2050758467 @default.
- W2772027160 cites W2064675550 @default.
- W2772027160 cites W2100358124 @default.
- W2772027160 cites W2105976328 @default.
- W2772027160 cites W2121382432 @default.
- W2772027160 cites W2146332392 @default.
- W2772027160 cites W2152814537 @default.
- W2772027160 cites W2167671703 @default.
- W2772027160 cites W2255847468 @default.
- W2772027160 cites W2396881363 @default.
- W2772027160 cites W2467651252 @default.
- W2772027160 cites W4236137412 @default.
- W2772027160 doi "https://doi.org/10.1109/icdmw.2017.156" @default.
- W2772027160 hasPublicationYear "2017" @default.
- W2772027160 type Work @default.
- W2772027160 sameAs 2772027160 @default.
- W2772027160 citedByCount "22" @default.
- W2772027160 countsByYear W27720271602018 @default.
- W2772027160 countsByYear W27720271602019 @default.
- W2772027160 countsByYear W27720271602020 @default.
- W2772027160 countsByYear W27720271602021 @default.
- W2772027160 countsByYear W27720271602022 @default.
- W2772027160 countsByYear W27720271602023 @default.
- W2772027160 crossrefType "proceedings-article" @default.
- W2772027160 hasAuthorship W2772027160A5017164999 @default.
- W2772027160 hasAuthorship W2772027160A5079044416 @default.
- W2772027160 hasConcept C108583219 @default.
- W2772027160 hasConcept C119857082 @default.
- W2772027160 hasConcept C138885662 @default.
- W2772027160 hasConcept C154945302 @default.
- W2772027160 hasConcept C160735492 @default.
- W2772027160 hasConcept C162324750 @default.
- W2772027160 hasConcept C202444582 @default.
- W2772027160 hasConcept C2522767166 @default.
- W2772027160 hasConcept C26517878 @default.
- W2772027160 hasConcept C2776401178 @default.
- W2772027160 hasConcept C3019952477 @default.
- W2772027160 hasConcept C33923547 @default.
- W2772027160 hasConcept C38652104 @default.
- W2772027160 hasConcept C41008148 @default.
- W2772027160 hasConcept C41895202 @default.
- W2772027160 hasConcept C48044578 @default.
- W2772027160 hasConcept C50522688 @default.
- W2772027160 hasConcept C77088390 @default.
- W2772027160 hasConcept C9652623 @default.
- W2772027160 hasConceptScore W2772027160C108583219 @default.
- W2772027160 hasConceptScore W2772027160C119857082 @default.
- W2772027160 hasConceptScore W2772027160C138885662 @default.
- W2772027160 hasConceptScore W2772027160C154945302 @default.
- W2772027160 hasConceptScore W2772027160C160735492 @default.
- W2772027160 hasConceptScore W2772027160C162324750 @default.
- W2772027160 hasConceptScore W2772027160C202444582 @default.
- W2772027160 hasConceptScore W2772027160C2522767166 @default.
- W2772027160 hasConceptScore W2772027160C26517878 @default.
- W2772027160 hasConceptScore W2772027160C2776401178 @default.
- W2772027160 hasConceptScore W2772027160C3019952477 @default.
- W2772027160 hasConceptScore W2772027160C33923547 @default.
- W2772027160 hasConceptScore W2772027160C38652104 @default.
- W2772027160 hasConceptScore W2772027160C41008148 @default.
- W2772027160 hasConceptScore W2772027160C41895202 @default.
- W2772027160 hasConceptScore W2772027160C48044578 @default.
- W2772027160 hasConceptScore W2772027160C50522688 @default.
- W2772027160 hasConceptScore W2772027160C77088390 @default.
- W2772027160 hasConceptScore W2772027160C9652623 @default.
- W2772027160 hasLocation W27720271601 @default.
- W2772027160 hasOpenAccess W2772027160 @default.
- W2772027160 hasPrimaryLocation W27720271601 @default.
- W2772027160 hasRelatedWork W1838576100 @default.
- W2772027160 hasRelatedWork W1983399550 @default.
- W2772027160 hasRelatedWork W2089704382 @default.
- W2772027160 hasRelatedWork W2095886385 @default.
- W2772027160 hasRelatedWork W2357523926 @default.
- W2772027160 hasRelatedWork W2389214306 @default.
- W2772027160 hasRelatedWork W2965083567 @default.
- W2772027160 hasRelatedWork W4235240664 @default.
- W2772027160 hasRelatedWork W4375867731 @default.
- W2772027160 hasRelatedWork W97075385 @default.
- W2772027160 isParatext "false" @default.
- W2772027160 isRetracted "false" @default.
- W2772027160 magId "2772027160" @default.
- W2772027160 workType "article" @default.