Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772048687> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W2772048687 endingPage "1145" @default.
- W2772048687 startingPage "1135" @default.
- W2772048687 abstract "人工蜂群算法是一种人工智能算法,被广泛地应用于求解各类优化问题,都达到了较为理想的结果。本文主要利用改进的人工蜂群算法研究了经典的证券投资组合优化模型,首先过基于公司基本面设计的计分函数挑选出股票,然后利用人工蜂群算法优化被挑选股票的权重。将人工蜂群算法与差分进化算法、粒子群算法等经典优化算法进行性能比较,从而验证算法的有效性以及所得模型的实用性。后改进MATLAB仿真实验,结果表明,在一定的风险水平下,改进的人工蜂群算法构建的投资组合与上述对比算法构建的投资组合以及指数型投资组合相比,获得的收益更高。 Artificial Bee Colony Algorithm is one of the artificial-intelligence algorithms, which has already applied into various optimization problems widely and has got excellent result. The objective of this paper is to create an optimum portfolio using ABC algorithm. The algorithm selects stocks on the basis of the scoring function designed on company fundamentals, and then assigns optimum weights to the selected stocks by ABC algorithm. Comparing the ABC algorithm with differential evolution algorithm and particle swarm optimization algorithm, it is verified that the validity of the algorithm and the practicality of the model. The results have been demonstrated by developing a MATLAB code to implement the algorithm shows that the portfolio which is constructed by the proposed ABC algorithm gets more profits than others, including the exponential portfolio." @default.
- W2772048687 created "2017-12-22" @default.
- W2772048687 creator A5023976646 @default.
- W2772048687 date "2017-01-01" @default.
- W2772048687 modified "2023-09-26" @default.
- W2772048687 title "Application of Artificial Bee Colony Algorithm in Portfolio" @default.
- W2772048687 cites W2015862907 @default.
- W2772048687 cites W2079529529 @default.
- W2772048687 cites W2090812374 @default.
- W2772048687 cites W2244192940 @default.
- W2772048687 doi "https://doi.org/10.12677/csa.2017.711128" @default.
- W2772048687 hasPublicationYear "2017" @default.
- W2772048687 type Work @default.
- W2772048687 sameAs 2772048687 @default.
- W2772048687 citedByCount "0" @default.
- W2772048687 crossrefType "journal-article" @default.
- W2772048687 hasAuthorship W2772048687A5023976646 @default.
- W2772048687 hasBestOaLocation W27720486871 @default.
- W2772048687 hasConcept C154945302 @default.
- W2772048687 hasConcept C41008148 @default.
- W2772048687 hasConcept C97133563 @default.
- W2772048687 hasConceptScore W2772048687C154945302 @default.
- W2772048687 hasConceptScore W2772048687C41008148 @default.
- W2772048687 hasConceptScore W2772048687C97133563 @default.
- W2772048687 hasIssue "11" @default.
- W2772048687 hasLocation W27720486871 @default.
- W2772048687 hasOpenAccess W2772048687 @default.
- W2772048687 hasPrimaryLocation W27720486871 @default.
- W2772048687 hasRelatedWork W2358668433 @default.
- W2772048687 hasRelatedWork W2390279801 @default.
- W2772048687 hasRelatedWork W2748952813 @default.
- W2772048687 hasRelatedWork W2766921194 @default.
- W2772048687 hasRelatedWork W2800067651 @default.
- W2772048687 hasRelatedWork W2807154228 @default.
- W2772048687 hasRelatedWork W2899084033 @default.
- W2772048687 hasRelatedWork W3083944492 @default.
- W2772048687 hasRelatedWork W3107474891 @default.
- W2772048687 hasRelatedWork W3216260098 @default.
- W2772048687 hasVolume "07" @default.
- W2772048687 isParatext "false" @default.
- W2772048687 isRetracted "false" @default.
- W2772048687 magId "2772048687" @default.
- W2772048687 workType "article" @default.