Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772068780> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2772068780 endingPage "131" @default.
- W2772068780 startingPage "120" @default.
- W2772068780 abstract "Convolutional neural networks (CNNs) have played a significant role in pedestrian detection, owing to their capacity of learning deep features from original image. It is noteworthy that most of the existing generalized objection detection networks must crop or warp the inputs to fixed-size which leads to the low performance on multifarious input sizes. Moreover, the lacking of hard negatives mining constrains the ability of recognition. To alleviate the problems, an associated work network which contains a metric coding net (MC-net) and a weighted association CNN (WA-CNN), is introduced. With region proposal net in low layer, MC-net is introduced to strengthen the difference of intra-class. WA-CNN can be regarded as a network to reinforce the distance of inter-class and it associates the MC-net to accomplish the detection task by a weighted strategy. Extensive evaluations show that our approach outperforms the state-of-the-art methods on the Caltech and INRIA datasets." @default.
- W2772068780 created "2017-12-22" @default.
- W2772068780 creator A5089997723 @default.
- W2772068780 creator A5091577686 @default.
- W2772068780 date "2017-01-01" @default.
- W2772068780 modified "2023-10-16" @default.
- W2772068780 title "Associated Metric Coding Network for Pedestrian Detection" @default.
- W2772068780 cites W1650122911 @default.
- W2772068780 cites W1903127635 @default.
- W2772068780 cites W1908020446 @default.
- W2772068780 cites W1982067089 @default.
- W2772068780 cites W1992825118 @default.
- W2772068780 cites W2031454541 @default.
- W2772068780 cites W2034779469 @default.
- W2772068780 cites W2081021369 @default.
- W2772068780 cites W2084997728 @default.
- W2772068780 cites W2098064689 @default.
- W2772068780 cites W2098699644 @default.
- W2772068780 cites W2117687030 @default.
- W2772068780 cites W2125556102 @default.
- W2772068780 cites W2133755669 @default.
- W2772068780 cites W2136724559 @default.
- W2772068780 cites W2151049637 @default.
- W2772068780 cites W2151454023 @default.
- W2772068780 cites W2156547346 @default.
- W2772068780 cites W2159386181 @default.
- W2772068780 cites W2162741153 @default.
- W2772068780 cites W2179352600 @default.
- W2772068780 cites W2211629196 @default.
- W2772068780 cites W2314557688 @default.
- W2772068780 cites W2497039038 @default.
- W2772068780 cites W2548197316 @default.
- W2772068780 cites W3097096317 @default.
- W2772068780 cites W345900524 @default.
- W2772068780 doi "https://doi.org/10.1007/978-981-10-7305-2_11" @default.
- W2772068780 hasPublicationYear "2017" @default.
- W2772068780 type Work @default.
- W2772068780 sameAs 2772068780 @default.
- W2772068780 citedByCount "0" @default.
- W2772068780 crossrefType "book-chapter" @default.
- W2772068780 hasAuthorship W2772068780A5089997723 @default.
- W2772068780 hasAuthorship W2772068780A5091577686 @default.
- W2772068780 hasConcept C105795698 @default.
- W2772068780 hasConcept C127413603 @default.
- W2772068780 hasConcept C176217482 @default.
- W2772068780 hasConcept C179518139 @default.
- W2772068780 hasConcept C21547014 @default.
- W2772068780 hasConcept C22212356 @default.
- W2772068780 hasConcept C2777113093 @default.
- W2772068780 hasConcept C33923547 @default.
- W2772068780 hasConcept C41008148 @default.
- W2772068780 hasConceptScore W2772068780C105795698 @default.
- W2772068780 hasConceptScore W2772068780C127413603 @default.
- W2772068780 hasConceptScore W2772068780C176217482 @default.
- W2772068780 hasConceptScore W2772068780C179518139 @default.
- W2772068780 hasConceptScore W2772068780C21547014 @default.
- W2772068780 hasConceptScore W2772068780C22212356 @default.
- W2772068780 hasConceptScore W2772068780C2777113093 @default.
- W2772068780 hasConceptScore W2772068780C33923547 @default.
- W2772068780 hasConceptScore W2772068780C41008148 @default.
- W2772068780 hasLocation W27720687801 @default.
- W2772068780 hasOpenAccess W2772068780 @default.
- W2772068780 hasPrimaryLocation W27720687801 @default.
- W2772068780 hasRelatedWork W2019540425 @default.
- W2772068780 hasRelatedWork W2054697996 @default.
- W2772068780 hasRelatedWork W2350280062 @default.
- W2772068780 hasRelatedWork W2367368021 @default.
- W2772068780 hasRelatedWork W2383319832 @default.
- W2772068780 hasRelatedWork W2565999991 @default.
- W2772068780 hasRelatedWork W2606323037 @default.
- W2772068780 hasRelatedWork W266446692 @default.
- W2772068780 hasRelatedWork W2795913521 @default.
- W2772068780 hasRelatedWork W4287552506 @default.
- W2772068780 isParatext "false" @default.
- W2772068780 isRetracted "false" @default.
- W2772068780 magId "2772068780" @default.
- W2772068780 workType "book-chapter" @default.