Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772070950> ?p ?o ?g. }
- W2772070950 endingPage "417" @default.
- W2772070950 startingPage "404" @default.
- W2772070950 abstract "High-dimensional data contain not only redundancy but also noises produced by the sensors. These noises are usually non-Gaussian distributed. The metrics based on Euclidean distance are not suitable for these situations in general. In order to select the useful features and combat the adverse effects of the noises simultaneously, a robust sparse subspace learning method in unsupervised scenario is proposed in this paper based on the maximum correntropy criterion that shows strong robustness against outliers. Furthermore, an iterative strategy based on half quadratic and an accelerated block coordinate update is proposed. The convergence analysis of the proposed method is also carried out to ensure the convergence to a reliable solution. Extensive experiments are conducted on real-world data sets to show that the new method can filter out the outliers and outperform several state-of-the-art unsupervised feature selection methods." @default.
- W2772070950 created "2017-12-22" @default.
- W2772070950 creator A5001862779 @default.
- W2772070950 creator A5005376529 @default.
- W2772070950 creator A5042965582 @default.
- W2772070950 creator A5055895298 @default.
- W2772070950 creator A5077852542 @default.
- W2772070950 date "2019-02-01" @default.
- W2772070950 modified "2023-10-14" @default.
- W2772070950 title "Maximum Correntropy Criterion-Based Sparse Subspace Learning for Unsupervised Feature Selection" @default.
- W2772070950 cites W1496462336 @default.
- W2772070950 cites W1701760339 @default.
- W2772070950 cites W1758799351 @default.
- W2772070950 cites W1968154520 @default.
- W2772070950 cites W1968580628 @default.
- W2772070950 cites W1980907873 @default.
- W2772070950 cites W2015648984 @default.
- W2772070950 cites W2019034316 @default.
- W2772070950 cites W2021361347 @default.
- W2772070950 cites W2055618074 @default.
- W2772070950 cites W2073382079 @default.
- W2772070950 cites W2080744942 @default.
- W2772070950 cites W2083666679 @default.
- W2772070950 cites W2086424613 @default.
- W2772070950 cites W2114588272 @default.
- W2772070950 cites W2121947440 @default.
- W2772070950 cites W2128873747 @default.
- W2772070950 cites W2132379769 @default.
- W2772070950 cites W2135160607 @default.
- W2772070950 cites W2137823674 @default.
- W2772070950 cites W2209159500 @default.
- W2772070950 cites W2226862355 @default.
- W2772070950 cites W2274755597 @default.
- W2772070950 cites W2963134661 @default.
- W2772070950 cites W2964024693 @default.
- W2772070950 cites W3024853581 @default.
- W2772070950 cites W4230367971 @default.
- W2772070950 doi "https://doi.org/10.1109/tcsvt.2017.2783364" @default.
- W2772070950 hasPublicationYear "2019" @default.
- W2772070950 type Work @default.
- W2772070950 sameAs 2772070950 @default.
- W2772070950 citedByCount "29" @default.
- W2772070950 countsByYear W27720709502019 @default.
- W2772070950 countsByYear W27720709502020 @default.
- W2772070950 countsByYear W27720709502021 @default.
- W2772070950 countsByYear W27720709502022 @default.
- W2772070950 countsByYear W27720709502023 @default.
- W2772070950 crossrefType "journal-article" @default.
- W2772070950 hasAuthorship W2772070950A5001862779 @default.
- W2772070950 hasAuthorship W2772070950A5005376529 @default.
- W2772070950 hasAuthorship W2772070950A5042965582 @default.
- W2772070950 hasAuthorship W2772070950A5055895298 @default.
- W2772070950 hasAuthorship W2772070950A5077852542 @default.
- W2772070950 hasBestOaLocation W27720709501 @default.
- W2772070950 hasConcept C104317684 @default.
- W2772070950 hasConcept C111919701 @default.
- W2772070950 hasConcept C11413529 @default.
- W2772070950 hasConcept C120174047 @default.
- W2772070950 hasConcept C148483581 @default.
- W2772070950 hasConcept C152124472 @default.
- W2772070950 hasConcept C153180895 @default.
- W2772070950 hasConcept C154945302 @default.
- W2772070950 hasConcept C157553263 @default.
- W2772070950 hasConcept C185592680 @default.
- W2772070950 hasConcept C32834561 @default.
- W2772070950 hasConcept C41008148 @default.
- W2772070950 hasConcept C55493867 @default.
- W2772070950 hasConcept C63479239 @default.
- W2772070950 hasConcept C79337645 @default.
- W2772070950 hasConceptScore W2772070950C104317684 @default.
- W2772070950 hasConceptScore W2772070950C111919701 @default.
- W2772070950 hasConceptScore W2772070950C11413529 @default.
- W2772070950 hasConceptScore W2772070950C120174047 @default.
- W2772070950 hasConceptScore W2772070950C148483581 @default.
- W2772070950 hasConceptScore W2772070950C152124472 @default.
- W2772070950 hasConceptScore W2772070950C153180895 @default.
- W2772070950 hasConceptScore W2772070950C154945302 @default.
- W2772070950 hasConceptScore W2772070950C157553263 @default.
- W2772070950 hasConceptScore W2772070950C185592680 @default.
- W2772070950 hasConceptScore W2772070950C32834561 @default.
- W2772070950 hasConceptScore W2772070950C41008148 @default.
- W2772070950 hasConceptScore W2772070950C55493867 @default.
- W2772070950 hasConceptScore W2772070950C63479239 @default.
- W2772070950 hasConceptScore W2772070950C79337645 @default.
- W2772070950 hasFunder F4320306076 @default.
- W2772070950 hasFunder F4320321001 @default.
- W2772070950 hasFunder F4320335777 @default.
- W2772070950 hasIssue "2" @default.
- W2772070950 hasLocation W27720709501 @default.
- W2772070950 hasOpenAccess W2772070950 @default.
- W2772070950 hasPrimaryLocation W27720709501 @default.
- W2772070950 hasRelatedWork W2316780152 @default.
- W2772070950 hasRelatedWork W2321141263 @default.
- W2772070950 hasRelatedWork W2355730941 @default.
- W2772070950 hasRelatedWork W2543161807 @default.
- W2772070950 hasRelatedWork W2594663467 @default.
- W2772070950 hasRelatedWork W2736019006 @default.
- W2772070950 hasRelatedWork W2766037315 @default.