Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772073676> ?p ?o ?g. }
- W2772073676 endingPage "1207" @default.
- W2772073676 startingPage "1194" @default.
- W2772073676 abstract "A multivariate stochastic soil moisture (SM) estimation approach based on a Gaussian-mixture nonstationary hidden Markov model (GM-NHMM) is introduced in this study to spatially disaggregate the AMSR2 SM data for multiple locations in the Yongdam dam watershed in South Korea. Rainfall and air temperature are considered as additional predictors in the proposed modeling framework. In GM-NHMM, a six-state model is constructed with three predictors representing an unobserved state associated with SM. It is clearly seen that the rainfall predictor plays a substantial role in achieving the overall predictability. Using weather variables (i.e., rainfall and temperature) can be effective in picking up some of the predictability of local SM that is not captured by the AMSR2 data. On the other hand, larger scale dynamic features identified from the AMSR2 data seem to facilitate the identification of regional spatial patterns of SM. The efficiency of the proposed model is compared with that of an ordinary regression model (OLR) using the same predictors. The mean correlation coefficient of the proposed model is about 0.78, which is significantly greater than that of the OLR at about 0.49. The proposed GM-NHMM method not only provides a better representation of the observed SM than the OLR model but also preserves the spatial coherence across all stations reasonably well." @default.
- W2772073676 created "2017-12-22" @default.
- W2772073676 creator A5008643995 @default.
- W2772073676 creator A5077363783 @default.
- W2772073676 creator A5088691571 @default.
- W2772073676 date "2018-09-01" @default.
- W2772073676 modified "2023-09-27" @default.
- W2772073676 title "A spatial downscaling of soil moisture from rainfall, temperature, and AMSR2 using a Gaussian-mixture nonstationary hidden Markov model" @default.
- W2772073676 cites W1500251030 @default.
- W2772073676 cites W1564860500 @default.
- W2772073676 cites W1671478075 @default.
- W2772073676 cites W1732175824 @default.
- W2772073676 cites W1926971900 @default.
- W2772073676 cites W1939351039 @default.
- W2772073676 cites W1940804098 @default.
- W2772073676 cites W1964989255 @default.
- W2772073676 cites W1978616730 @default.
- W2772073676 cites W1981817238 @default.
- W2772073676 cites W1991133427 @default.
- W2772073676 cites W1998742682 @default.
- W2772073676 cites W2003578656 @default.
- W2772073676 cites W2005492394 @default.
- W2772073676 cites W2011106705 @default.
- W2772073676 cites W2013049148 @default.
- W2772073676 cites W2013706107 @default.
- W2772073676 cites W2016456974 @default.
- W2772073676 cites W2018850436 @default.
- W2772073676 cites W2019828488 @default.
- W2772073676 cites W2027554150 @default.
- W2772073676 cites W2030520626 @default.
- W2772073676 cites W2039350738 @default.
- W2772073676 cites W2055996025 @default.
- W2772073676 cites W2075920507 @default.
- W2772073676 cites W2081483875 @default.
- W2772073676 cites W2085044762 @default.
- W2772073676 cites W2093135704 @default.
- W2772073676 cites W2097498299 @default.
- W2772073676 cites W2100969003 @default.
- W2772073676 cites W2104845188 @default.
- W2772073676 cites W2108976508 @default.
- W2772073676 cites W2116391493 @default.
- W2772073676 cites W2116428100 @default.
- W2772073676 cites W2116779222 @default.
- W2772073676 cites W2125838338 @default.
- W2772073676 cites W2127967130 @default.
- W2772073676 cites W2128410490 @default.
- W2772073676 cites W2132804972 @default.
- W2772073676 cites W2142140549 @default.
- W2772073676 cites W2147496287 @default.
- W2772073676 cites W2148691574 @default.
- W2772073676 cites W2159101325 @default.
- W2772073676 cites W2161582210 @default.
- W2772073676 cites W2166609657 @default.
- W2772073676 cites W2167235427 @default.
- W2772073676 cites W2287268520 @default.
- W2772073676 cites W2443939784 @default.
- W2772073676 cites W2496225726 @default.
- W2772073676 cites W2524680928 @default.
- W2772073676 cites W2542312769 @default.
- W2772073676 cites W2587709124 @default.
- W2772073676 cites W2590407554 @default.
- W2772073676 cites W2604918280 @default.
- W2772073676 cites W2611476520 @default.
- W2772073676 cites W2614861146 @default.
- W2772073676 cites W4253510653 @default.
- W2772073676 cites W784701991 @default.
- W2772073676 doi "https://doi.org/10.1016/j.jhydrol.2017.12.015" @default.
- W2772073676 hasPublicationYear "2018" @default.
- W2772073676 type Work @default.
- W2772073676 sameAs 2772073676 @default.
- W2772073676 citedByCount "19" @default.
- W2772073676 countsByYear W27720736762019 @default.
- W2772073676 countsByYear W27720736762020 @default.
- W2772073676 countsByYear W27720736762021 @default.
- W2772073676 countsByYear W27720736762022 @default.
- W2772073676 countsByYear W27720736762023 @default.
- W2772073676 crossrefType "journal-article" @default.
- W2772073676 hasAuthorship W2772073676A5008643995 @default.
- W2772073676 hasAuthorship W2772073676A5077363783 @default.
- W2772073676 hasAuthorship W2772073676A5088691571 @default.
- W2772073676 hasBestOaLocation W27720736762 @default.
- W2772073676 hasConcept C105795698 @default.
- W2772073676 hasConcept C107054158 @default.
- W2772073676 hasConcept C127313418 @default.
- W2772073676 hasConcept C150060386 @default.
- W2772073676 hasConcept C153294291 @default.
- W2772073676 hasConcept C161584116 @default.
- W2772073676 hasConcept C197640229 @default.
- W2772073676 hasConcept C205649164 @default.
- W2772073676 hasConcept C33923547 @default.
- W2772073676 hasConcept C39432304 @default.
- W2772073676 hasConcept C41156917 @default.
- W2772073676 hasConcept C49204034 @default.
- W2772073676 hasConceptScore W2772073676C105795698 @default.
- W2772073676 hasConceptScore W2772073676C107054158 @default.
- W2772073676 hasConceptScore W2772073676C127313418 @default.
- W2772073676 hasConceptScore W2772073676C150060386 @default.
- W2772073676 hasConceptScore W2772073676C153294291 @default.