Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772093180> ?p ?o ?g. }
- W2772093180 endingPage "14" @default.
- W2772093180 startingPage "7" @default.
- W2772093180 abstract "Abstract Most health studies focus on one health outcome and examine the influence of one or multiple risk factors. However, in reality, various pathways, interactions, and associations exist not only between risk factors and health outcomes but also among the risk factors and among health outcomes. The advance of system science methods, Big Data, and accumulated knowledge allows us to examine how multiple risk factors influence multiple health outcomes at multiple levels (termed a 3M study). Using the study of neighborhood environment and health as an example, I elaborate on the significance of 3M studies. 3M studies may lead to a significantly deeper understanding of the dynamic interactions among risk factors and outcomes and could help us design better interventions that may be of particular relevance for upstream interventions. Agent‐based modeling (ABM) is a promising method in the 3M study, although its potentials are far from being fully explored. Future challenges include the gap of epidemiologic knowledge and evidence, lack of empirical data sources, and the technical challenges of ABM." @default.
- W2772093180 created "2017-12-22" @default.
- W2772093180 creator A5014979330 @default.
- W2772093180 date "2017-11-01" @default.
- W2772093180 modified "2023-09-25" @default.
- W2772093180 title "Using agent-based modeling to study multiple risk factors and multiple health outcomes at multiple levels" @default.
- W2772093180 cites W1602514926 @default.
- W2772093180 cites W1843320408 @default.
- W2772093180 cites W1981179562 @default.
- W2772093180 cites W2002459162 @default.
- W2772093180 cites W2003576118 @default.
- W2772093180 cites W2007603696 @default.
- W2772093180 cites W2024112143 @default.
- W2772093180 cites W2026336575 @default.
- W2772093180 cites W2034831131 @default.
- W2772093180 cites W2044084419 @default.
- W2772093180 cites W2046258671 @default.
- W2772093180 cites W2058473208 @default.
- W2772093180 cites W2064842021 @default.
- W2772093180 cites W2067148556 @default.
- W2772093180 cites W2071021088 @default.
- W2772093180 cites W2081863442 @default.
- W2772093180 cites W2092424260 @default.
- W2772093180 cites W2093955145 @default.
- W2772093180 cites W2106887868 @default.
- W2772093180 cites W2108198401 @default.
- W2772093180 cites W2108749376 @default.
- W2772093180 cites W2109248649 @default.
- W2772093180 cites W2111453735 @default.
- W2772093180 cites W2117606624 @default.
- W2772093180 cites W2123001035 @default.
- W2772093180 cites W2125270265 @default.
- W2772093180 cites W2136381467 @default.
- W2772093180 cites W2139236032 @default.
- W2772093180 cites W2140862057 @default.
- W2772093180 cites W2144759387 @default.
- W2772093180 cites W2149393522 @default.
- W2772093180 cites W2150704630 @default.
- W2772093180 cites W2158089900 @default.
- W2772093180 cites W2158455763 @default.
- W2772093180 cites W2161611987 @default.
- W2772093180 cites W2164084271 @default.
- W2772093180 cites W2169248481 @default.
- W2772093180 cites W2172281567 @default.
- W2772093180 cites W2231336372 @default.
- W2772093180 cites W2261525379 @default.
- W2772093180 cites W2307039749 @default.
- W2772093180 cites W2341197940 @default.
- W2772093180 cites W2401263138 @default.
- W2772093180 cites W2460668226 @default.
- W2772093180 cites W2527803868 @default.
- W2772093180 doi "https://doi.org/10.1111/nyas.13558" @default.
- W2772093180 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29239482" @default.
- W2772093180 hasPublicationYear "2017" @default.
- W2772093180 type Work @default.
- W2772093180 sameAs 2772093180 @default.
- W2772093180 citedByCount "5" @default.
- W2772093180 countsByYear W27720931802019 @default.
- W2772093180 countsByYear W27720931802020 @default.
- W2772093180 countsByYear W27720931802022 @default.
- W2772093180 crossrefType "journal-article" @default.
- W2772093180 hasAuthorship W2772093180A5014979330 @default.
- W2772093180 hasConcept C111472728 @default.
- W2772093180 hasConcept C112930515 @default.
- W2772093180 hasConcept C118552586 @default.
- W2772093180 hasConcept C120936955 @default.
- W2772093180 hasConcept C138885662 @default.
- W2772093180 hasConcept C144237770 @default.
- W2772093180 hasConcept C148220186 @default.
- W2772093180 hasConcept C15744967 @default.
- W2772093180 hasConcept C158154518 @default.
- W2772093180 hasConcept C162324750 @default.
- W2772093180 hasConcept C17744445 @default.
- W2772093180 hasConcept C191172861 @default.
- W2772093180 hasConcept C199539241 @default.
- W2772093180 hasConcept C2522767166 @default.
- W2772093180 hasConcept C27415008 @default.
- W2772093180 hasConcept C2984618805 @default.
- W2772093180 hasConcept C31258907 @default.
- W2772093180 hasConcept C41008148 @default.
- W2772093180 hasConcept C71924100 @default.
- W2772093180 hasConcept C99454951 @default.
- W2772093180 hasConceptScore W2772093180C111472728 @default.
- W2772093180 hasConceptScore W2772093180C112930515 @default.
- W2772093180 hasConceptScore W2772093180C118552586 @default.
- W2772093180 hasConceptScore W2772093180C120936955 @default.
- W2772093180 hasConceptScore W2772093180C138885662 @default.
- W2772093180 hasConceptScore W2772093180C144237770 @default.
- W2772093180 hasConceptScore W2772093180C148220186 @default.
- W2772093180 hasConceptScore W2772093180C15744967 @default.
- W2772093180 hasConceptScore W2772093180C158154518 @default.
- W2772093180 hasConceptScore W2772093180C162324750 @default.
- W2772093180 hasConceptScore W2772093180C17744445 @default.
- W2772093180 hasConceptScore W2772093180C191172861 @default.
- W2772093180 hasConceptScore W2772093180C199539241 @default.
- W2772093180 hasConceptScore W2772093180C2522767166 @default.
- W2772093180 hasConceptScore W2772093180C27415008 @default.
- W2772093180 hasConceptScore W2772093180C2984618805 @default.