Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772176482> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2772176482 abstract "Remote sensing data and image classification algorithms can be very useful in the identification of beach patterns and therefore can be used as inputs in beach classification models. In this work, one aerial photograph, one IKONOS-2 image and one FORMOSAT-2 image were applied to a part of the northwest coast of Portugal. Several image processing algorithms were employed and compared: pixel-based approach, object-based approach, Principal Components Analysis (PCA), Artificial Neural Network (ANN) and Decision Trees (DT). The ANN and DT algorithms employed conduced to better results than the traditional classification methodologies (pixel-based, object-based and PCA), allowed a more accurate identification of rip currents. Regarding the data used, the high spatial resolution of aerial photograph allows for the better discrimination of different micro patterns. The FORMOSAT-2 image presents a lower spatial resolution, which did not allow for the identification of small microforms. Concluding, the conjugation of better spatial and spectral resolution of IKONOS-2 data and the data mining algorithms seems to be the better approach to accurately identify beach patterns through remotely sensed data." @default.
- W2772176482 created "2017-12-22" @default.
- W2772176482 creator A5011996030 @default.
- W2772176482 creator A5035143393 @default.
- W2772176482 creator A5069226093 @default.
- W2772176482 creator A5080730743 @default.
- W2772176482 date "2017-12-05" @default.
- W2772176482 modified "2023-10-14" @default.
- W2772176482 title "Remote Sensing Data and Image Classification Algorithms in the Identification of Beach Patterns" @default.
- W2772176482 cites W1990485686 @default.
- W2772176482 cites W2022189525 @default.
- W2772176482 cites W2043580143 @default.
- W2772176482 cites W2123291301 @default.
- W2772176482 cites W2155439653 @default.
- W2772176482 cites W2159807629 @default.
- W2772176482 cites W2169743309 @default.
- W2772176482 cites W2213039760 @default.
- W2772176482 cites W2429318187 @default.
- W2772176482 cites W2463120123 @default.
- W2772176482 doi "https://doi.org/10.1007/978-3-319-58304-4_28" @default.
- W2772176482 hasPublicationYear "2017" @default.
- W2772176482 type Work @default.
- W2772176482 sameAs 2772176482 @default.
- W2772176482 citedByCount "3" @default.
- W2772176482 countsByYear W27721764822020 @default.
- W2772176482 countsByYear W27721764822021 @default.
- W2772176482 crossrefType "book-chapter" @default.
- W2772176482 hasAuthorship W2772176482A5011996030 @default.
- W2772176482 hasAuthorship W2772176482A5035143393 @default.
- W2772176482 hasAuthorship W2772176482A5069226093 @default.
- W2772176482 hasAuthorship W2772176482A5080730743 @default.
- W2772176482 hasConcept C115961682 @default.
- W2772176482 hasConcept C116834253 @default.
- W2772176482 hasConcept C124101348 @default.
- W2772176482 hasConcept C153180895 @default.
- W2772176482 hasConcept C154945302 @default.
- W2772176482 hasConcept C160633673 @default.
- W2772176482 hasConcept C205372480 @default.
- W2772176482 hasConcept C205649164 @default.
- W2772176482 hasConcept C2776429412 @default.
- W2772176482 hasConcept C2781238097 @default.
- W2772176482 hasConcept C41008148 @default.
- W2772176482 hasConcept C50644808 @default.
- W2772176482 hasConcept C59822182 @default.
- W2772176482 hasConcept C62649853 @default.
- W2772176482 hasConcept C75294576 @default.
- W2772176482 hasConcept C86803240 @default.
- W2772176482 hasConceptScore W2772176482C115961682 @default.
- W2772176482 hasConceptScore W2772176482C116834253 @default.
- W2772176482 hasConceptScore W2772176482C124101348 @default.
- W2772176482 hasConceptScore W2772176482C153180895 @default.
- W2772176482 hasConceptScore W2772176482C154945302 @default.
- W2772176482 hasConceptScore W2772176482C160633673 @default.
- W2772176482 hasConceptScore W2772176482C205372480 @default.
- W2772176482 hasConceptScore W2772176482C205649164 @default.
- W2772176482 hasConceptScore W2772176482C2776429412 @default.
- W2772176482 hasConceptScore W2772176482C2781238097 @default.
- W2772176482 hasConceptScore W2772176482C41008148 @default.
- W2772176482 hasConceptScore W2772176482C50644808 @default.
- W2772176482 hasConceptScore W2772176482C59822182 @default.
- W2772176482 hasConceptScore W2772176482C62649853 @default.
- W2772176482 hasConceptScore W2772176482C75294576 @default.
- W2772176482 hasConceptScore W2772176482C86803240 @default.
- W2772176482 hasLocation W27721764821 @default.
- W2772176482 hasOpenAccess W2772176482 @default.
- W2772176482 hasPrimaryLocation W27721764821 @default.
- W2772176482 hasRelatedWork W1632706404 @default.
- W2772176482 hasRelatedWork W1977023447 @default.
- W2772176482 hasRelatedWork W1979564527 @default.
- W2772176482 hasRelatedWork W2008783166 @default.
- W2772176482 hasRelatedWork W2015452213 @default.
- W2772176482 hasRelatedWork W2020496314 @default.
- W2772176482 hasRelatedWork W2022189525 @default.
- W2772176482 hasRelatedWork W2048426655 @default.
- W2772176482 hasRelatedWork W2055907219 @default.
- W2772176482 hasRelatedWork W2057658046 @default.
- W2772176482 hasRelatedWork W2135868737 @default.
- W2772176482 hasRelatedWork W2138069974 @default.
- W2772176482 hasRelatedWork W2141418029 @default.
- W2772176482 hasRelatedWork W2158179908 @default.
- W2772176482 hasRelatedWork W2386367549 @default.
- W2772176482 hasRelatedWork W2544203512 @default.
- W2772176482 hasRelatedWork W27756842 @default.
- W2772176482 hasRelatedWork W3197416260 @default.
- W2772176482 hasRelatedWork W2048535456 @default.
- W2772176482 hasRelatedWork W2091186066 @default.
- W2772176482 isParatext "false" @default.
- W2772176482 isRetracted "false" @default.
- W2772176482 magId "2772176482" @default.
- W2772176482 workType "book-chapter" @default.