Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772274890> ?p ?o ?g. }
- W2772274890 endingPage "712" @default.
- W2772274890 startingPage "697" @default.
- W2772274890 abstract "Constructing accurate and reliable groundwater risk maps provide scientifically prudent and strategic measures for the protection and management of groundwater. The objectives of this paper are to design and validate machine learning based-risk maps using ensemble-based modelling with an integrative approach. We employ the extreme learning machines (ELM), multivariate regression splines (MARS), M5 Tree and support vector regression (SVR) applied in multiple aquifer systems (e.g. unconfined, semi-confined and confined) in the Marand plain, North West Iran, to encapsulate the merits of individual learning algorithms in a final committee-based ANN model. The DRASTIC Vulnerability Index (VI) ranged from 56.7 to 128.1, categorized with no risk, low and moderate vulnerability thresholds. The correlation coefficient (r) and Willmott's Index (d) between NO3 concentrations and VI were 0.64 and 0.314, respectively. To introduce improvements in the original DRASTIC method, the vulnerability indices were adjusted by NO3 concentrations, termed as the groundwater contamination risk (GCR). Seven DRASTIC parameters utilized as the model inputs and GCR values utilized as the outputs of individual machine learning models were served in the fully optimized committee-based ANN-predictive model. The correlation indicators demonstrated that the ELM and SVR models outperformed the MARS and M5 Tree models, by virtue of a larger d and r value. Subsequently, the r and d metrics for the ANN-committee based multi-model in the testing phase were 0.8889 and 0.7913, respectively; revealing the superiority of the integrated (or ensemble) machine learning models when compared with the original DRASTIC approach. The newly designed multi-model ensemble-based approach can be considered as a pragmatic step for mapping groundwater contamination risks of multiple aquifer systems with multi-model techniques, yielding the high accuracy of the ANN committee-based model." @default.
- W2772274890 created "2017-12-22" @default.
- W2772274890 creator A5040000758 @default.
- W2772274890 creator A5063993849 @default.
- W2772274890 creator A5065141057 @default.
- W2772274890 creator A5068869544 @default.
- W2772274890 creator A5075946371 @default.
- W2772274890 date "2018-04-01" @default.
- W2772274890 modified "2023-10-17" @default.
- W2772274890 title "Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms" @default.
- W2772274890 cites W1740585449 @default.
- W2772274890 cites W1854912902 @default.
- W2772274890 cites W1866003614 @default.
- W2772274890 cites W1880274833 @default.
- W2772274890 cites W1943970452 @default.
- W2772274890 cites W1969990473 @default.
- W2772274890 cites W1975167110 @default.
- W2772274890 cites W1977064421 @default.
- W2772274890 cites W1981093830 @default.
- W2772274890 cites W1981569342 @default.
- W2772274890 cites W1981680609 @default.
- W2772274890 cites W1987336849 @default.
- W2772274890 cites W1997159081 @default.
- W2772274890 cites W2004243167 @default.
- W2772274890 cites W2009258611 @default.
- W2772274890 cites W2013990421 @default.
- W2772274890 cites W2015592326 @default.
- W2772274890 cites W2028874024 @default.
- W2772274890 cites W2029871071 @default.
- W2772274890 cites W2030134103 @default.
- W2772274890 cites W2031841681 @default.
- W2772274890 cites W2038913727 @default.
- W2772274890 cites W2039049978 @default.
- W2772274890 cites W2045464761 @default.
- W2772274890 cites W2046654411 @default.
- W2772274890 cites W2046785557 @default.
- W2772274890 cites W2052049881 @default.
- W2772274890 cites W2054574678 @default.
- W2772274890 cites W2057915933 @default.
- W2772274890 cites W2058621438 @default.
- W2772274890 cites W2062186327 @default.
- W2772274890 cites W2064661501 @default.
- W2772274890 cites W2067086056 @default.
- W2772274890 cites W2077664012 @default.
- W2772274890 cites W2081670007 @default.
- W2772274890 cites W2082192822 @default.
- W2772274890 cites W2088123298 @default.
- W2772274890 cites W2090684971 @default.
- W2772274890 cites W2097453622 @default.
- W2772274890 cites W2102201073 @default.
- W2772274890 cites W2103205867 @default.
- W2772274890 cites W2142402822 @default.
- W2772274890 cites W2165983257 @default.
- W2772274890 cites W2228116959 @default.
- W2772274890 cites W2274744025 @default.
- W2772274890 cites W2289152296 @default.
- W2772274890 cites W2312400300 @default.
- W2772274890 cites W2398936495 @default.
- W2772274890 cites W2461675021 @default.
- W2772274890 cites W2536008880 @default.
- W2772274890 cites W2543805200 @default.
- W2772274890 cites W2560837060 @default.
- W2772274890 cites W2592903613 @default.
- W2772274890 cites W2605206306 @default.
- W2772274890 cites W2608837339 @default.
- W2772274890 cites W2624343786 @default.
- W2772274890 cites W2729341269 @default.
- W2772274890 cites W2750068691 @default.
- W2772274890 cites W3000332379 @default.
- W2772274890 cites W321415147 @default.
- W2772274890 cites W626243351 @default.
- W2772274890 cites W836867855 @default.
- W2772274890 doi "https://doi.org/10.1016/j.scitotenv.2017.11.185" @default.
- W2772274890 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29197289" @default.
- W2772274890 hasPublicationYear "2018" @default.
- W2772274890 type Work @default.
- W2772274890 sameAs 2772274890 @default.
- W2772274890 citedByCount "121" @default.
- W2772274890 countsByYear W27722748902018 @default.
- W2772274890 countsByYear W27722748902019 @default.
- W2772274890 countsByYear W27722748902020 @default.
- W2772274890 countsByYear W27722748902021 @default.
- W2772274890 countsByYear W27722748902022 @default.
- W2772274890 countsByYear W27722748902023 @default.
- W2772274890 crossrefType "journal-article" @default.
- W2772274890 hasAuthorship W2772274890A5040000758 @default.
- W2772274890 hasAuthorship W2772274890A5063993849 @default.
- W2772274890 hasAuthorship W2772274890A5065141057 @default.
- W2772274890 hasAuthorship W2772274890A5068869544 @default.
- W2772274890 hasAuthorship W2772274890A5075946371 @default.
- W2772274890 hasConcept C11413529 @default.
- W2772274890 hasConcept C119857082 @default.
- W2772274890 hasConcept C119898033 @default.
- W2772274890 hasConcept C121332964 @default.
- W2772274890 hasConcept C12267149 @default.
- W2772274890 hasConcept C124101348 @default.
- W2772274890 hasConcept C127413603 @default.
- W2772274890 hasConcept C1276947 @default.