Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772436728> ?p ?o ?g. }
- W2772436728 endingPage "461" @default.
- W2772436728 startingPage "439" @default.
- W2772436728 abstract "Stress affects chemical processes on all scales in the Earth but the magnitude of its effect is debated. Here, I give a new synthesis of the theory that describes the effects of stress on chemistry, elaborating upon work in Materials Science which is built from fundamental thermodynamic laws, and show its significance in Earth Science. There are separate but compatible relationships describing what happens (1) at interfaces and (2) within grains. (1) The main chemical effects of stress in the Earth are due to variations in normal stress along grain interfaces and between interfaces with different orientations. For reactions involving diffusion these variations give effects on mineral stability broadly equivalent to pressure changes of (molar volume)/(molar volume change during reaction) × (stress variation). The volume ratio is generally large and so the effects of normal stress variations are always important since all stressed rocks have interfaces supporting different normal stresses. There is no global chemical equilibrium in a stressed system, so reaction kinetics contribute to ongoing evolution until stresses relax: this evolution can include deformation by diffusion creep and pressure solution, possibly with new mineral growth. These effects are relevant for predicting the conditions for reactions involving fluids, such as serpentinite formation and breakdown (relevant for the Earth's volatile cycles) and for other reactions such as ringwoodite breakdown (relevant for understanding the 660 km mantle discontinuity). (2) Within stressed solid solution grains it is not possible to define chemical potentials of all chemical components since one has to be specified as “immobile.” The chemical potential of a “mobile” component such as an exchange vector can be defined. It depends on the “partial molar strain,” a second rank tensor defining the variation in unit cell geometry with composition. In cubic crystals the partial molar strain is isotropic and the chemical potential of a mobile component depends on mean stress. In other crystal systems the partial molar strain is anisotropic and the chemical potential depends on a “weighted” mean stress; orientation as well as magnitude of stress has an influence. I propose “chemical palaeopiezometry”—the possibility of measuring past stress levels via chemistry. Examples show that stress variations in hundreds of MPa to GPa are required to produce 2% variations in composition but high stresses and/or precise chemical analyses will allow this proposal to be tested. High stresses around inclusions and dislocations could be targeted. So, the weighted mean stress inside grains has an effect which is relatively minor although potentially valuable in explaining chemical variations; the normal stress at interfaces plays the main role in chemical processes and its effects are of significant magnitude." @default.
- W2772436728 created "2017-12-22" @default.
- W2772436728 creator A5054122219 @default.
- W2772436728 date "2018-01-15" @default.
- W2772436728 modified "2023-10-01" @default.
- W2772436728 title "The effects of stress on reactions in the Earth: Sometimes rather mean, usually normal, always important" @default.
- W2772436728 cites W1576164025 @default.
- W2772436728 cites W1583884998 @default.
- W2772436728 cites W1621677047 @default.
- W2772436728 cites W1667665679 @default.
- W2772436728 cites W1985618711 @default.
- W2772436728 cites W1988139212 @default.
- W2772436728 cites W1990330208 @default.
- W2772436728 cites W1991768287 @default.
- W2772436728 cites W1991916053 @default.
- W2772436728 cites W1994131483 @default.
- W2772436728 cites W1996153512 @default.
- W2772436728 cites W1997268573 @default.
- W2772436728 cites W1999647229 @default.
- W2772436728 cites W2004236451 @default.
- W2772436728 cites W2006314613 @default.
- W2772436728 cites W2010370560 @default.
- W2772436728 cites W2012604213 @default.
- W2772436728 cites W2015036059 @default.
- W2772436728 cites W2015399809 @default.
- W2772436728 cites W2017032355 @default.
- W2772436728 cites W2019497963 @default.
- W2772436728 cites W2020894748 @default.
- W2772436728 cites W2030097713 @default.
- W2772436728 cites W2030105175 @default.
- W2772436728 cites W2031391014 @default.
- W2772436728 cites W2038741603 @default.
- W2772436728 cites W2043697036 @default.
- W2772436728 cites W2043769548 @default.
- W2772436728 cites W2044309887 @default.
- W2772436728 cites W2047694097 @default.
- W2772436728 cites W2049303595 @default.
- W2772436728 cites W2052476532 @default.
- W2772436728 cites W2054297781 @default.
- W2772436728 cites W2074229546 @default.
- W2772436728 cites W2080134449 @default.
- W2772436728 cites W2086158883 @default.
- W2772436728 cites W2096046660 @default.
- W2772436728 cites W2104262408 @default.
- W2772436728 cites W2110623290 @default.
- W2772436728 cites W2120844630 @default.
- W2772436728 cites W2128136955 @default.
- W2772436728 cites W2136411870 @default.
- W2772436728 cites W2146339725 @default.
- W2772436728 cites W2317174497 @default.
- W2772436728 cites W2325013151 @default.
- W2772436728 cites W2333543236 @default.
- W2772436728 cites W2346728324 @default.
- W2772436728 cites W2479864333 @default.
- W2772436728 cites W2499376039 @default.
- W2772436728 cites W2517489691 @default.
- W2772436728 cites W2564541807 @default.
- W2772436728 cites W4236325904 @default.
- W2772436728 cites W4252478006 @default.
- W2772436728 doi "https://doi.org/10.1111/jmg.12299" @default.
- W2772436728 hasPublicationYear "2018" @default.
- W2772436728 type Work @default.
- W2772436728 sameAs 2772436728 @default.
- W2772436728 citedByCount "35" @default.
- W2772436728 countsByYear W27724367282018 @default.
- W2772436728 countsByYear W27724367282019 @default.
- W2772436728 countsByYear W27724367282020 @default.
- W2772436728 countsByYear W27724367282021 @default.
- W2772436728 countsByYear W27724367282022 @default.
- W2772436728 countsByYear W27724367282023 @default.
- W2772436728 crossrefType "journal-article" @default.
- W2772436728 hasAuthorship W2772436728A5054122219 @default.
- W2772436728 hasBestOaLocation W27724367281 @default.
- W2772436728 hasConcept C121332964 @default.
- W2772436728 hasConcept C127313418 @default.
- W2772436728 hasConcept C130452526 @default.
- W2772436728 hasConcept C134306372 @default.
- W2772436728 hasConcept C138885662 @default.
- W2772436728 hasConcept C149912024 @default.
- W2772436728 hasConcept C159467904 @default.
- W2772436728 hasConcept C174178034 @default.
- W2772436728 hasConcept C177801218 @default.
- W2772436728 hasConcept C185592680 @default.
- W2772436728 hasConcept C192562407 @default.
- W2772436728 hasConcept C199289684 @default.
- W2772436728 hasConcept C21036866 @default.
- W2772436728 hasConcept C2777042112 @default.
- W2772436728 hasConcept C33923547 @default.
- W2772436728 hasConcept C41895202 @default.
- W2772436728 hasConcept C55493867 @default.
- W2772436728 hasConcept C69357855 @default.
- W2772436728 hasConcept C97355855 @default.
- W2772436728 hasConceptScore W2772436728C121332964 @default.
- W2772436728 hasConceptScore W2772436728C127313418 @default.
- W2772436728 hasConceptScore W2772436728C130452526 @default.
- W2772436728 hasConceptScore W2772436728C134306372 @default.
- W2772436728 hasConceptScore W2772436728C138885662 @default.
- W2772436728 hasConceptScore W2772436728C149912024 @default.