Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772465720> ?p ?o ?g. }
- W2772465720 abstract "While deep learning has led to significant advances in visual recognition over the past few years, such advances often require a lot of annotated data. Unsupervised domain adaptation has emerged as an alternative approach that does not require as much annotated data, prior evaluations of domain adaptation approaches have been limited to relatively similar datasets, e.g source and target domains are samples captured by different cameras. A new data suite is proposed that comprehensively evaluates cross-modality domain adaptation problems. This work pushes the limit of unsupervised domain adaptation through an in-depth evaluation of several state of the art methods on benchmark datasets and the new dataset suite. We also propose a new domain adaptation network called Deep MagNet that effectively transfers knowledge for cross-modality domain adaptation problems. Deep Magnet achieves state of the art performance on two benchmark datasets. More importantly, the proposed method shows consistent improvements in performance on the newly proposed dataset suite." @default.
- W2772465720 created "2017-12-22" @default.
- W2772465720 creator A5010313721 @default.
- W2772465720 creator A5011256828 @default.
- W2772465720 creator A5039643101 @default.
- W2772465720 date "2017-12-06" @default.
- W2772465720 modified "2023-10-09" @default.
- W2772465720 title "Stretching Domain Adaptation: How far is too far?" @default.
- W2772465720 cites W104184427 @default.
- W2772465720 cites W1565327149 @default.
- W2772465720 cites W1576445103 @default.
- W2772465720 cites W1677182931 @default.
- W2772465720 cites W1722318740 @default.
- W2772465720 cites W1903029394 @default.
- W2772465720 cites W1972420097 @default.
- W2772465720 cites W1978920452 @default.
- W2772465720 cites W1991264156 @default.
- W2772465720 cites W2069057437 @default.
- W2772465720 cites W2115403315 @default.
- W2772465720 cites W2117539524 @default.
- W2772465720 cites W2128053425 @default.
- W2772465720 cites W2155904486 @default.
- W2772465720 cites W2190691619 @default.
- W2772465720 cites W2194775991 @default.
- W2772465720 cites W2212660284 @default.
- W2772465720 cites W22861983 @default.
- W2772465720 cites W2584009249 @default.
- W2772465720 cites W2619710258 @default.
- W2772465720 cites W2949074159 @default.
- W2772465720 cites W2949092679 @default.
- W2772465720 cites W2950094539 @default.
- W2772465720 cites W2950361018 @default.
- W2772465720 cites W2951670162 @default.
- W2772465720 cites W2952348863 @default.
- W2772465720 cites W2963446712 @default.
- W2772465720 cites W2963502507 @default.
- W2772465720 cites W2963709863 @default.
- W2772465720 cites W2963826681 @default.
- W2772465720 cites W2964008341 @default.
- W2772465720 cites W2964228922 @default.
- W2772465720 cites W2964278684 @default.
- W2772465720 cites W639708223 @default.
- W2772465720 cites W2435623039 @default.
- W2772465720 doi "https://doi.org/10.48550/arxiv.1712.02286" @default.
- W2772465720 hasPublicationYear "2017" @default.
- W2772465720 type Work @default.
- W2772465720 sameAs 2772465720 @default.
- W2772465720 citedByCount "3" @default.
- W2772465720 countsByYear W27724657202020 @default.
- W2772465720 countsByYear W27724657202021 @default.
- W2772465720 crossrefType "posted-content" @default.
- W2772465720 hasAuthorship W2772465720A5010313721 @default.
- W2772465720 hasAuthorship W2772465720A5011256828 @default.
- W2772465720 hasAuthorship W2772465720A5039643101 @default.
- W2772465720 hasBestOaLocation W27724657201 @default.
- W2772465720 hasConcept C108583219 @default.
- W2772465720 hasConcept C119857082 @default.
- W2772465720 hasConcept C120665830 @default.
- W2772465720 hasConcept C121332964 @default.
- W2772465720 hasConcept C13280743 @default.
- W2772465720 hasConcept C134306372 @default.
- W2772465720 hasConcept C139807058 @default.
- W2772465720 hasConcept C154945302 @default.
- W2772465720 hasConcept C166957645 @default.
- W2772465720 hasConcept C185798385 @default.
- W2772465720 hasConcept C205649164 @default.
- W2772465720 hasConcept C2776434776 @default.
- W2772465720 hasConcept C2780226545 @default.
- W2772465720 hasConcept C33923547 @default.
- W2772465720 hasConcept C36503486 @default.
- W2772465720 hasConcept C41008148 @default.
- W2772465720 hasConcept C79581498 @default.
- W2772465720 hasConcept C95457728 @default.
- W2772465720 hasConcept C95623464 @default.
- W2772465720 hasConceptScore W2772465720C108583219 @default.
- W2772465720 hasConceptScore W2772465720C119857082 @default.
- W2772465720 hasConceptScore W2772465720C120665830 @default.
- W2772465720 hasConceptScore W2772465720C121332964 @default.
- W2772465720 hasConceptScore W2772465720C13280743 @default.
- W2772465720 hasConceptScore W2772465720C134306372 @default.
- W2772465720 hasConceptScore W2772465720C139807058 @default.
- W2772465720 hasConceptScore W2772465720C154945302 @default.
- W2772465720 hasConceptScore W2772465720C166957645 @default.
- W2772465720 hasConceptScore W2772465720C185798385 @default.
- W2772465720 hasConceptScore W2772465720C205649164 @default.
- W2772465720 hasConceptScore W2772465720C2776434776 @default.
- W2772465720 hasConceptScore W2772465720C2780226545 @default.
- W2772465720 hasConceptScore W2772465720C33923547 @default.
- W2772465720 hasConceptScore W2772465720C36503486 @default.
- W2772465720 hasConceptScore W2772465720C41008148 @default.
- W2772465720 hasConceptScore W2772465720C79581498 @default.
- W2772465720 hasConceptScore W2772465720C95457728 @default.
- W2772465720 hasConceptScore W2772465720C95623464 @default.
- W2772465720 hasLocation W27724657201 @default.
- W2772465720 hasOpenAccess W2772465720 @default.
- W2772465720 hasPrimaryLocation W27724657201 @default.
- W2772465720 hasRelatedWork W1485630101 @default.
- W2772465720 hasRelatedWork W2093683727 @default.
- W2772465720 hasRelatedWork W2950577464 @default.
- W2772465720 hasRelatedWork W3084863322 @default.