Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772505487> ?p ?o ?g. }
- W2772505487 endingPage "2796" @default.
- W2772505487 startingPage "2796" @default.
- W2772505487 abstract "During the propagation of ultrasonic waves in structures, there is usually energy loss due to ultrasound energy diffusion and dissipation. The aim of this research is to characterize the ultrasound energy diffusion that occurs due to small-size damage on an aluminum plate using piezoceramic transducers, for the future purpose of developing a damage detection algorithm. The ultrasonic energy diffusion coefficient is related to the damage distributed in the medium. Meanwhile, the ultrasonic energy dissipation coefficient is related to the inhomogeneity of the medium. Both are usually employed to describe the characteristics of ultrasound energy diffusion. The existence of multimodes of Lamb waves in metallic plate structures results in the asynchronous energy transport of different modes. The mode of Lamb waves has a great influence on ultrasound energy diffusion as a result, and thus has to be chosen appropriately. In order to study the characteristics of ultrasound energy diffusion in metallic plate structures, an experimental setup of an aluminum plate with a through-hole, whose diameter varies from 0.6 mm to 1.2 mm, is used as the test specimen with the help of piezoceramic transducers. The experimental results of two categories of damages at different locations reveal that the existence of damage changes the energy transport between the actuator and the sensor. Also, when there is only one dominate mode of Lamb wave excited in the structure, the ultrasound energy diffusion coefficient decreases approximately linearly with the diameter of the simulated damage. Meanwhile, the ultrasonic energy dissipation coefficient increases approximately linearly with the diameter of the simulated damage. However, when two or more modes of Lamb waves are excited, due to the existence of different group velocities between the different modes, the energy transport of the different modes is asynchronous, and the ultrasonic energy diffusion is not strictly linear with the size of the damage. Therefore, it is recommended that only one dominant mode of Lamb wave should be excited during the characterization process, in order to ensure that the linear relationship between the damage size and the characteristic parameters is maintained. In addition, the findings from this paper demonstrate the potential of developing future damage detection algorithms using the linear relationships between damage size and the ultrasound energy diffusion coefficient or ultrasonic energy dissipation coefficient when a single dominant mode is excited." @default.
- W2772505487 created "2017-12-22" @default.
- W2772505487 creator A5029278847 @default.
- W2772505487 creator A5031922022 @default.
- W2772505487 creator A5034164432 @default.
- W2772505487 creator A5042768072 @default.
- W2772505487 creator A5073209610 @default.
- W2772505487 date "2017-12-04" @default.
- W2772505487 modified "2023-10-17" @default.
- W2772505487 title "Characterization of Ultrasound Energy Diffusion Due to Small-Size Damage on an Aluminum Plate Using Piezoceramic Transducers" @default.
- W2772505487 cites W1973695799 @default.
- W2772505487 cites W1979899423 @default.
- W2772505487 cites W1985110503 @default.
- W2772505487 cites W1987526783 @default.
- W2772505487 cites W1987833023 @default.
- W2772505487 cites W1988347487 @default.
- W2772505487 cites W1993450920 @default.
- W2772505487 cites W1993786858 @default.
- W2772505487 cites W1995230482 @default.
- W2772505487 cites W1998665038 @default.
- W2772505487 cites W2003593043 @default.
- W2772505487 cites W2005563629 @default.
- W2772505487 cites W2007407383 @default.
- W2772505487 cites W2008275071 @default.
- W2772505487 cites W2010810622 @default.
- W2772505487 cites W2012282802 @default.
- W2772505487 cites W2020441694 @default.
- W2772505487 cites W2023890849 @default.
- W2772505487 cites W2026081515 @default.
- W2772505487 cites W2030262987 @default.
- W2772505487 cites W2035527623 @default.
- W2772505487 cites W2036248420 @default.
- W2772505487 cites W2045811932 @default.
- W2772505487 cites W2058894842 @default.
- W2772505487 cites W2062172589 @default.
- W2772505487 cites W2072716714 @default.
- W2772505487 cites W2075469533 @default.
- W2772505487 cites W2076384613 @default.
- W2772505487 cites W2076822705 @default.
- W2772505487 cites W2086078778 @default.
- W2772505487 cites W2088713509 @default.
- W2772505487 cites W2091321824 @default.
- W2772505487 cites W2093299232 @default.
- W2772505487 cites W2095302401 @default.
- W2772505487 cites W2117389860 @default.
- W2772505487 cites W2121966841 @default.
- W2772505487 cites W2128671534 @default.
- W2772505487 cites W2130517123 @default.
- W2772505487 cites W2154007667 @default.
- W2772505487 cites W2168966965 @default.
- W2772505487 cites W2218865708 @default.
- W2772505487 cites W2238951610 @default.
- W2772505487 cites W2259297144 @default.
- W2772505487 cites W2281939831 @default.
- W2772505487 cites W2326125941 @default.
- W2772505487 cites W2346605265 @default.
- W2772505487 cites W2414718241 @default.
- W2772505487 cites W2493656770 @default.
- W2772505487 cites W2503716373 @default.
- W2772505487 cites W2508542750 @default.
- W2772505487 cites W2509443795 @default.
- W2772505487 cites W2512377352 @default.
- W2772505487 cites W2518694888 @default.
- W2772505487 cites W2524488913 @default.
- W2772505487 cites W2534940181 @default.
- W2772505487 cites W2560101304 @default.
- W2772505487 cites W2561759783 @default.
- W2772505487 cites W2582720565 @default.
- W2772505487 cites W2600030330 @default.
- W2772505487 cites W2605839656 @default.
- W2772505487 cites W2618168041 @default.
- W2772505487 cites W2619030265 @default.
- W2772505487 cites W2737509113 @default.
- W2772505487 cites W2739461674 @default.
- W2772505487 cites W2742594625 @default.
- W2772505487 cites W2744906474 @default.
- W2772505487 cites W2752657080 @default.
- W2772505487 cites W2759693509 @default.
- W2772505487 cites W2765513770 @default.
- W2772505487 doi "https://doi.org/10.3390/s17122796" @default.
- W2772505487 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5751634" @default.
- W2772505487 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29207530" @default.
- W2772505487 hasPublicationYear "2017" @default.
- W2772505487 type Work @default.
- W2772505487 sameAs 2772505487 @default.
- W2772505487 citedByCount "28" @default.
- W2772505487 countsByYear W27725054872018 @default.
- W2772505487 countsByYear W27725054872019 @default.
- W2772505487 countsByYear W27725054872020 @default.
- W2772505487 countsByYear W27725054872021 @default.
- W2772505487 countsByYear W27725054872022 @default.
- W2772505487 countsByYear W27725054872023 @default.
- W2772505487 crossrefType "journal-article" @default.
- W2772505487 hasAuthorship W2772505487A5029278847 @default.
- W2772505487 hasAuthorship W2772505487A5031922022 @default.
- W2772505487 hasAuthorship W2772505487A5034164432 @default.
- W2772505487 hasAuthorship W2772505487A5042768072 @default.
- W2772505487 hasAuthorship W2772505487A5073209610 @default.