Matches in SemOpenAlex for { <https://semopenalex.org/work/W2772947247> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2772947247 abstract "Financial fraud is an ever growing menace with far consequences in the financial industry. Data mining had played an imperative role in the detection of credit card fraud in online transactions. Credit card fraud detection, which is a data mining problem, becomes challenging due to two major reasons — first, the profiles of normal and fraudulent behaviours change constantly and secondly, credit card fraud data sets are highly skewed. The performance of fraud detection in credit card transactions is greatly affected by the sampling approach on dataset, selection of variables and detection technique(s) used. This paper investigates the performance of naive bayes, k-nearest neighbor and logistic regression on highly skewed credit card fraud data. Dataset of credit card transactions is sourced from European cardholders containing 284,807 transactions. A hybrid technique of under-sampling and oversampling is carried out on the skewed data. The three techniques are applied on the raw and preprocessed data. The work is implemented in Python. The performance of the techniques is evaluated based on accuracy, sensitivity, specificity, precision, Matthews correlation coefficient and balanced classification rate. The results shows of optimal accuracy for naive bayes, k-nearest neighbor and logistic regression classifiers are 97.92%, 97.69% and 54.86% respectively. The comparative results show that k-nearest neighbour performs better than naive bayes and logistic regression techniques." @default.
- W2772947247 created "2017-12-22" @default.
- W2772947247 creator A5018760869 @default.
- W2772947247 creator A5029691336 @default.
- W2772947247 creator A5035327477 @default.
- W2772947247 date "2017-10-01" @default.
- W2772947247 modified "2023-10-18" @default.
- W2772947247 title "Credit card fraud detection using machine learning techniques: A comparative analysis" @default.
- W2772947247 cites W1964089535 @default.
- W2772947247 cites W1969322419 @default.
- W2772947247 cites W2032435122 @default.
- W2772947247 cites W2040661907 @default.
- W2772947247 cites W2045049630 @default.
- W2772947247 cites W2085548088 @default.
- W2772947247 cites W2119101338 @default.
- W2772947247 cites W2122025464 @default.
- W2772947247 cites W2127242195 @default.
- W2772947247 cites W2148125134 @default.
- W2772947247 cites W2148373332 @default.
- W2772947247 cites W2217007515 @default.
- W2772947247 cites W321037060 @default.
- W2772947247 doi "https://doi.org/10.1109/iccni.2017.8123782" @default.
- W2772947247 hasPublicationYear "2017" @default.
- W2772947247 type Work @default.
- W2772947247 sameAs 2772947247 @default.
- W2772947247 citedByCount "233" @default.
- W2772947247 countsByYear W27729472472018 @default.
- W2772947247 countsByYear W27729472472019 @default.
- W2772947247 countsByYear W27729472472020 @default.
- W2772947247 countsByYear W27729472472021 @default.
- W2772947247 countsByYear W27729472472022 @default.
- W2772947247 countsByYear W27729472472023 @default.
- W2772947247 crossrefType "proceedings-article" @default.
- W2772947247 hasAuthorship W2772947247A5018760869 @default.
- W2772947247 hasAuthorship W2772947247A5029691336 @default.
- W2772947247 hasAuthorship W2772947247A5035327477 @default.
- W2772947247 hasConcept C113238511 @default.
- W2772947247 hasConcept C119857082 @default.
- W2772947247 hasConcept C12267149 @default.
- W2772947247 hasConcept C124101348 @default.
- W2772947247 hasConcept C136764020 @default.
- W2772947247 hasConcept C145097563 @default.
- W2772947247 hasConcept C148483581 @default.
- W2772947247 hasConcept C151956035 @default.
- W2772947247 hasConcept C154945302 @default.
- W2772947247 hasConcept C197323446 @default.
- W2772947247 hasConcept C2776257435 @default.
- W2772947247 hasConcept C2780747020 @default.
- W2772947247 hasConcept C2983355114 @default.
- W2772947247 hasConcept C31258907 @default.
- W2772947247 hasConcept C41008148 @default.
- W2772947247 hasConcept C52001869 @default.
- W2772947247 hasConceptScore W2772947247C113238511 @default.
- W2772947247 hasConceptScore W2772947247C119857082 @default.
- W2772947247 hasConceptScore W2772947247C12267149 @default.
- W2772947247 hasConceptScore W2772947247C124101348 @default.
- W2772947247 hasConceptScore W2772947247C136764020 @default.
- W2772947247 hasConceptScore W2772947247C145097563 @default.
- W2772947247 hasConceptScore W2772947247C148483581 @default.
- W2772947247 hasConceptScore W2772947247C151956035 @default.
- W2772947247 hasConceptScore W2772947247C154945302 @default.
- W2772947247 hasConceptScore W2772947247C197323446 @default.
- W2772947247 hasConceptScore W2772947247C2776257435 @default.
- W2772947247 hasConceptScore W2772947247C2780747020 @default.
- W2772947247 hasConceptScore W2772947247C2983355114 @default.
- W2772947247 hasConceptScore W2772947247C31258907 @default.
- W2772947247 hasConceptScore W2772947247C41008148 @default.
- W2772947247 hasConceptScore W2772947247C52001869 @default.
- W2772947247 hasLocation W27729472471 @default.
- W2772947247 hasOpenAccess W2772947247 @default.
- W2772947247 hasPrimaryLocation W27729472471 @default.
- W2772947247 hasRelatedWork W3115100063 @default.
- W2772947247 hasRelatedWork W3205325062 @default.
- W2772947247 hasRelatedWork W4200308074 @default.
- W2772947247 hasRelatedWork W4214489515 @default.
- W2772947247 hasRelatedWork W4224212887 @default.
- W2772947247 hasRelatedWork W4225136133 @default.
- W2772947247 hasRelatedWork W4225146313 @default.
- W2772947247 hasRelatedWork W4225149278 @default.
- W2772947247 hasRelatedWork W4283520324 @default.
- W2772947247 hasRelatedWork W4283700410 @default.
- W2772947247 isParatext "false" @default.
- W2772947247 isRetracted "false" @default.
- W2772947247 magId "2772947247" @default.
- W2772947247 workType "article" @default.