Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773052278> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2773052278 endingPage "44" @default.
- W2773052278 startingPage "27" @default.
- W2773052278 abstract "Abstract One of the principal causes of several chronic diseases (e.g., diabetes, high cholesterol, and hypertension) is the obesity epidemic in high and middle income countries. Obesity also leads to an increasingly negative effect on public health resources. Therefore, obesity and overweight have to be monitored to mitigate and prevent the potential risks generated from the threat of related diseases and from reducing productivity experienced by businesses. A mobile-health monitoring system includes sensing, transmitting, storing, processing, and analyzing intensive, continuous, and heterogeneous medical data. However, current approaches are standalone mobile applications, augmented mobile applications, or mobile health systems. These approaches only consider simple activities (assess, detect, or control obesity) and rely on a mobile phone to perform complex processing operations on the collected data. Such complex operations need (1) efficient data mining techniques, (2) more memory consumption and processing time, and (3) long life mobile battery. In this work, we develop a new comprehensive mobile architecture for tackling the challenging issues of obesity control, monitoring, and prevention. We introduce a set of business requirements considering stakeholders, sensor devices, and architecture requirements to meet our architecture's objectives. Our architecture system can also help individuals track food intake, lifestyle, calories intake, calories consumption, and exercise activities. We analyze the data collected from continuous monitoring using non-invasive sensors, in addition to the data collected from social communities created to propagate awareness and share appropriate information about the obesity problem and its solution. We develop data mining algorithms and sentiment analysis algorithms and generate intelligent suggestions, warnings, and recommendations to control and mitigate the risk of obesity and its related diseases. We develop schemes for reducing data and saving energy, which minimize the amount of network traffic within the community of sensors. Moreover, we totally implement our architecture system as a collection of Web services organized by the model–view–controller design pattern to write, retrieve, and access data to and from the cloud storage firebase. We finally evaluate the efficacy and scalability of the implemented system using a comprehensive cloud database including entered data, calculated data, sensory data, and social data of 50 underweight, overweight, normal, and obese volunteer subjects. The obtained results show our architecture's objectives are fulfilled." @default.
- W2773052278 created "2017-12-22" @default.
- W2773052278 creator A5008280936 @default.
- W2773052278 creator A5022074764 @default.
- W2773052278 creator A5026885872 @default.
- W2773052278 creator A5035128702 @default.
- W2773052278 date "2018-01-01" @default.
- W2773052278 modified "2023-09-24" @default.
- W2773052278 title "Mobile health architecture for obesity management using sensory and social data" @default.
- W2773052278 cites W1733363676 @default.
- W2773052278 cites W1901026176 @default.
- W2773052278 cites W1963703037 @default.
- W2773052278 cites W1977977041 @default.
- W2773052278 cites W1988256277 @default.
- W2773052278 cites W2005135935 @default.
- W2773052278 cites W2034578271 @default.
- W2773052278 cites W2043774123 @default.
- W2773052278 cites W2049876247 @default.
- W2773052278 cites W2050165774 @default.
- W2773052278 cites W2088914074 @default.
- W2773052278 cites W2099017849 @default.
- W2773052278 cites W2109257383 @default.
- W2773052278 cites W2115478835 @default.
- W2773052278 cites W2127615810 @default.
- W2773052278 cites W2132428032 @default.
- W2773052278 cites W2140790583 @default.
- W2773052278 cites W2141190905 @default.
- W2773052278 cites W2143120883 @default.
- W2773052278 cites W2157909351 @default.
- W2773052278 cites W2160779142 @default.
- W2773052278 cites W2168249179 @default.
- W2773052278 cites W2268810205 @default.
- W2773052278 cites W965143697 @default.
- W2773052278 doi "https://doi.org/10.1016/j.imu.2017.12.005" @default.
- W2773052278 hasPublicationYear "2018" @default.
- W2773052278 type Work @default.
- W2773052278 sameAs 2773052278 @default.
- W2773052278 citedByCount "19" @default.
- W2773052278 countsByYear W27730522782018 @default.
- W2773052278 countsByYear W27730522782019 @default.
- W2773052278 countsByYear W27730522782020 @default.
- W2773052278 countsByYear W27730522782021 @default.
- W2773052278 countsByYear W27730522782023 @default.
- W2773052278 crossrefType "journal-article" @default.
- W2773052278 hasAuthorship W2773052278A5008280936 @default.
- W2773052278 hasAuthorship W2773052278A5022074764 @default.
- W2773052278 hasAuthorship W2773052278A5026885872 @default.
- W2773052278 hasAuthorship W2773052278A5035128702 @default.
- W2773052278 hasBestOaLocation W27730522781 @default.
- W2773052278 hasConcept C123657996 @default.
- W2773052278 hasConcept C126322002 @default.
- W2773052278 hasConcept C136764020 @default.
- W2773052278 hasConcept C15744967 @default.
- W2773052278 hasConcept C166957645 @default.
- W2773052278 hasConcept C169760540 @default.
- W2773052278 hasConcept C205649164 @default.
- W2773052278 hasConcept C2522767166 @default.
- W2773052278 hasConcept C2988145974 @default.
- W2773052278 hasConcept C41008148 @default.
- W2773052278 hasConcept C511355011 @default.
- W2773052278 hasConcept C71924100 @default.
- W2773052278 hasConcept C94487597 @default.
- W2773052278 hasConceptScore W2773052278C123657996 @default.
- W2773052278 hasConceptScore W2773052278C126322002 @default.
- W2773052278 hasConceptScore W2773052278C136764020 @default.
- W2773052278 hasConceptScore W2773052278C15744967 @default.
- W2773052278 hasConceptScore W2773052278C166957645 @default.
- W2773052278 hasConceptScore W2773052278C169760540 @default.
- W2773052278 hasConceptScore W2773052278C205649164 @default.
- W2773052278 hasConceptScore W2773052278C2522767166 @default.
- W2773052278 hasConceptScore W2773052278C2988145974 @default.
- W2773052278 hasConceptScore W2773052278C41008148 @default.
- W2773052278 hasConceptScore W2773052278C511355011 @default.
- W2773052278 hasConceptScore W2773052278C71924100 @default.
- W2773052278 hasConceptScore W2773052278C94487597 @default.
- W2773052278 hasLocation W27730522781 @default.
- W2773052278 hasOpenAccess W2773052278 @default.
- W2773052278 hasPrimaryLocation W27730522781 @default.
- W2773052278 hasRelatedWork W2345799635 @default.
- W2773052278 hasRelatedWork W2382623646 @default.
- W2773052278 hasRelatedWork W2735416636 @default.
- W2773052278 hasRelatedWork W2748952813 @default.
- W2773052278 hasRelatedWork W2762577149 @default.
- W2773052278 hasRelatedWork W2899084033 @default.
- W2773052278 hasRelatedWork W2901346193 @default.
- W2773052278 hasRelatedWork W2909181617 @default.
- W2773052278 hasRelatedWork W2972850838 @default.
- W2773052278 hasRelatedWork W396164270 @default.
- W2773052278 hasVolume "10" @default.
- W2773052278 isParatext "false" @default.
- W2773052278 isRetracted "false" @default.
- W2773052278 magId "2773052278" @default.
- W2773052278 workType "article" @default.