Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773168092> ?p ?o ?g. }
- W2773168092 endingPage "217" @default.
- W2773168092 startingPage "208" @default.
- W2773168092 abstract "Surface-enhanced Raman spectroscopy (SERS) has been widely used in a variety of biomedical, analytical, forensic and environmental investigations due to its chemical specificity, label-free nature combined with high sensitivity. Here, we report a simple method for the fabrication of reproducible and reliable, well-defined, stable SERS substrates with uniform and giant Raman enhancement suitable for routine trace chemical analysis and detection of biological compounds in complex biological fluids. We prepared porous silicone (PS) surface by a galvanostatic anodic etch of crystalline silicon wafers. The electrochemical process generates a specific layer of PS: the thickness and porosity of a given layer is controlled by the current density, the duration of the etch cycle, and the composition of the etchant solution. These substrates presented high sensitivity to p-mercaptobenzoic acid (p-MBA) at a low concentration of 10-6M and the enhancement factor of over 108 was achieved. Such high enhancement is attributed to semiconducting silicon-induced and stabilized hot spots. The uniform distribution of SERS-active 'hot-spots' on the Au/Si surface results in high reproducibility towards detecting p-MBA at 40 different, randomly selected positions on a single substrate (RSD=6.7%) and on twenty different SERS substrates prepared under identical conditions (RSD=8%). Designed substrates allow the ultrahigh sensitive and specific detection of human such biofluids as blood, urine and cerebrospinal fluid (CSF) in a reliable, label-free, and reproducible manner. The SERS spectra of these fluids are rich in patient-specific information and can be useful in many analytical and biomedical applications. We have shown that our developed SERS substrates allow the nanomolar detection of neopterin (bacterial infections' marker) in cerebrospinal fluid samples. In order to test the performance of our SERS method in term of low detection limit (LOD), the calibration curve i.e. plot of SERS intensity of the marker band at 695cm-1 versus the concentration of neopterin in CSF was constructed and used to calculate the neopterin concentration in clinical samples. The level of neopterin was significantly higher in CSF samples infected by Neisseria meningitidis, (54nmol/L), compared to normal (control) group, (4.3nmol/L). The high sensitivity, selectivity and stability of obtained SERS-active substrates combined with simple, low-cost, and easy method of producing offer a promising tool for SERS-based analysis in clinical trials." @default.
- W2773168092 created "2017-12-22" @default.
- W2773168092 creator A5016118858 @default.
- W2773168092 creator A5048949242 @default.
- W2773168092 creator A5076250166 @default.
- W2773168092 creator A5082759804 @default.
- W2773168092 creator A5083051762 @default.
- W2773168092 date "2018-03-01" @default.
- W2773168092 modified "2023-10-02" @default.
- W2773168092 title "Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis" @default.
- W2773168092 cites W1808357633 @default.
- W2773168092 cites W1841401548 @default.
- W2773168092 cites W1964548759 @default.
- W2773168092 cites W1964830489 @default.
- W2773168092 cites W1968253015 @default.
- W2773168092 cites W1980984906 @default.
- W2773168092 cites W1992733645 @default.
- W2773168092 cites W1992993741 @default.
- W2773168092 cites W2000681367 @default.
- W2773168092 cites W2007199319 @default.
- W2773168092 cites W2009398610 @default.
- W2773168092 cites W2009658139 @default.
- W2773168092 cites W2019722364 @default.
- W2773168092 cites W2022882997 @default.
- W2773168092 cites W2026831948 @default.
- W2773168092 cites W2027285945 @default.
- W2773168092 cites W2029559711 @default.
- W2773168092 cites W2034316586 @default.
- W2773168092 cites W2039238873 @default.
- W2773168092 cites W2041850536 @default.
- W2773168092 cites W2043490617 @default.
- W2773168092 cites W2044535929 @default.
- W2773168092 cites W2046451099 @default.
- W2773168092 cites W2056007471 @default.
- W2773168092 cites W2064796543 @default.
- W2773168092 cites W2068024235 @default.
- W2773168092 cites W2072268698 @default.
- W2773168092 cites W2072415517 @default.
- W2773168092 cites W2076824606 @default.
- W2773168092 cites W2078288839 @default.
- W2773168092 cites W2080511631 @default.
- W2773168092 cites W2080854515 @default.
- W2773168092 cites W2084460251 @default.
- W2773168092 cites W2084690926 @default.
- W2773168092 cites W2085623764 @default.
- W2773168092 cites W2087249002 @default.
- W2773168092 cites W2088157474 @default.
- W2773168092 cites W2088410098 @default.
- W2773168092 cites W2088672294 @default.
- W2773168092 cites W2089114244 @default.
- W2773168092 cites W2091553569 @default.
- W2773168092 cites W2091653644 @default.
- W2773168092 cites W2092440482 @default.
- W2773168092 cites W2092575834 @default.
- W2773168092 cites W2101863112 @default.
- W2773168092 cites W2115797520 @default.
- W2773168092 cites W2118901449 @default.
- W2773168092 cites W2120720373 @default.
- W2773168092 cites W2122347920 @default.
- W2773168092 cites W2132725540 @default.
- W2773168092 cites W2134016278 @default.
- W2773168092 cites W2142424111 @default.
- W2773168092 cites W2151514604 @default.
- W2773168092 cites W2152913167 @default.
- W2773168092 cites W2163944065 @default.
- W2773168092 cites W2165233139 @default.
- W2773168092 cites W2166510106 @default.
- W2773168092 cites W2170423501 @default.
- W2773168092 cites W2338553755 @default.
- W2773168092 cites W2345386955 @default.
- W2773168092 cites W2411797752 @default.
- W2773168092 cites W2468530681 @default.
- W2773168092 cites W2531105432 @default.
- W2773168092 cites W3131735448 @default.
- W2773168092 cites W4210986449 @default.
- W2773168092 cites W4238768614 @default.
- W2773168092 doi "https://doi.org/10.1016/j.msec.2017.11.029" @default.
- W2773168092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29519430" @default.
- W2773168092 hasPublicationYear "2018" @default.
- W2773168092 type Work @default.
- W2773168092 sameAs 2773168092 @default.
- W2773168092 citedByCount "22" @default.
- W2773168092 countsByYear W27731680922018 @default.
- W2773168092 countsByYear W27731680922019 @default.
- W2773168092 countsByYear W27731680922020 @default.
- W2773168092 countsByYear W27731680922021 @default.
- W2773168092 countsByYear W27731680922022 @default.
- W2773168092 countsByYear W27731680922023 @default.
- W2773168092 crossrefType "journal-article" @default.
- W2773168092 hasAuthorship W2773168092A5016118858 @default.
- W2773168092 hasAuthorship W2773168092A5048949242 @default.
- W2773168092 hasAuthorship W2773168092A5076250166 @default.
- W2773168092 hasAuthorship W2773168092A5082759804 @default.
- W2773168092 hasAuthorship W2773168092A5083051762 @default.
- W2773168092 hasConcept C111368507 @default.
- W2773168092 hasConcept C113196181 @default.
- W2773168092 hasConcept C120665830 @default.
- W2773168092 hasConcept C121332964 @default.