Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773194908> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2773194908 endingPage "79" @default.
- W2773194908 startingPage "70" @default.
- W2773194908 abstract "Sinter yield and strength were predicted by the method of numerical simulation in this study. An unsteady two-dimensional mathematical model for the iron ore sintering process was developed by taking most of the significant physical phenomena and chemical reactions into consideration. By employing FLUENT software and C language programming via custom code, numerical simulation was carried out. A sinter pot test was performed and experimental data reasonably agreed with the numerical results, which validated the model. By analyzing temperature profile and melt fraction, parameters including peak temperature, residence time, cooling rate, melt formation heat and melt fraction were analyzed. Relationship between cooling rate and sinter strength was discussed as well as relationship between melt fraction and the yield of product sinter. Results indicated that sinter strength and yield could be predicted by simulation. The effects of different coke contents and additional heat supplement on sinter strength and yield were discussed. Results showed that increasing coke content improves sinter strength. Lower coke content will lead to increasing of under-melted sinter while higher coke content will lead to increasing of over-melted sinter and decreasing of the yield. Additional heat supplement technology can not only enhance sinter strength, but also promote sinter yield significantly." @default.
- W2773194908 created "2017-12-22" @default.
- W2773194908 creator A5023135321 @default.
- W2773194908 creator A5065292892 @default.
- W2773194908 creator A5088673622 @default.
- W2773194908 date "2018-02-01" @default.
- W2773194908 modified "2023-10-16" @default.
- W2773194908 title "Prediction of sinter yield and strength in iron ore sintering process by numerical simulation" @default.
- W2773194908 cites W1970960179 @default.
- W2773194908 cites W1973273722 @default.
- W2773194908 cites W1974388716 @default.
- W2773194908 cites W1976263601 @default.
- W2773194908 cites W1978014354 @default.
- W2773194908 cites W1986677620 @default.
- W2773194908 cites W1996750705 @default.
- W2773194908 cites W2004072683 @default.
- W2773194908 cites W2007308323 @default.
- W2773194908 cites W2028762065 @default.
- W2773194908 cites W2034630689 @default.
- W2773194908 cites W2059070911 @default.
- W2773194908 cites W2059071527 @default.
- W2773194908 cites W2061415191 @default.
- W2773194908 cites W2067284494 @default.
- W2773194908 cites W2078107952 @default.
- W2773194908 cites W2080854887 @default.
- W2773194908 cites W2088261954 @default.
- W2773194908 cites W2122201187 @default.
- W2773194908 cites W2147881202 @default.
- W2773194908 cites W2156304549 @default.
- W2773194908 cites W2166395092 @default.
- W2773194908 cites W2311206888 @default.
- W2773194908 cites W2319866154 @default.
- W2773194908 cites W2335413623 @default.
- W2773194908 cites W3003464068 @default.
- W2773194908 doi "https://doi.org/10.1016/j.applthermaleng.2017.11.148" @default.
- W2773194908 hasPublicationYear "2018" @default.
- W2773194908 type Work @default.
- W2773194908 sameAs 2773194908 @default.
- W2773194908 citedByCount "32" @default.
- W2773194908 countsByYear W27731949082019 @default.
- W2773194908 countsByYear W27731949082020 @default.
- W2773194908 countsByYear W27731949082021 @default.
- W2773194908 countsByYear W27731949082022 @default.
- W2773194908 countsByYear W27731949082023 @default.
- W2773194908 crossrefType "journal-article" @default.
- W2773194908 hasAuthorship W2773194908A5023135321 @default.
- W2773194908 hasAuthorship W2773194908A5065292892 @default.
- W2773194908 hasAuthorship W2773194908A5088673622 @default.
- W2773194908 hasConcept C127413603 @default.
- W2773194908 hasConcept C134121241 @default.
- W2773194908 hasConcept C149629883 @default.
- W2773194908 hasConcept C178790620 @default.
- W2773194908 hasConcept C185592680 @default.
- W2773194908 hasConcept C191897082 @default.
- W2773194908 hasConcept C192562407 @default.
- W2773194908 hasConcept C2777581544 @default.
- W2773194908 hasConcept C2779748816 @default.
- W2773194908 hasConcept C2780385392 @default.
- W2773194908 hasConcept C44154836 @default.
- W2773194908 hasConcept C500300565 @default.
- W2773194908 hasConceptScore W2773194908C127413603 @default.
- W2773194908 hasConceptScore W2773194908C134121241 @default.
- W2773194908 hasConceptScore W2773194908C149629883 @default.
- W2773194908 hasConceptScore W2773194908C178790620 @default.
- W2773194908 hasConceptScore W2773194908C185592680 @default.
- W2773194908 hasConceptScore W2773194908C191897082 @default.
- W2773194908 hasConceptScore W2773194908C192562407 @default.
- W2773194908 hasConceptScore W2773194908C2777581544 @default.
- W2773194908 hasConceptScore W2773194908C2779748816 @default.
- W2773194908 hasConceptScore W2773194908C2780385392 @default.
- W2773194908 hasConceptScore W2773194908C44154836 @default.
- W2773194908 hasConceptScore W2773194908C500300565 @default.
- W2773194908 hasLocation W27731949081 @default.
- W2773194908 hasOpenAccess W2773194908 @default.
- W2773194908 hasPrimaryLocation W27731949081 @default.
- W2773194908 hasRelatedWork W1973757975 @default.
- W2773194908 hasRelatedWork W1992119521 @default.
- W2773194908 hasRelatedWork W2145727519 @default.
- W2773194908 hasRelatedWork W2349093832 @default.
- W2773194908 hasRelatedWork W2350876806 @default.
- W2773194908 hasRelatedWork W2367680150 @default.
- W2773194908 hasRelatedWork W2559535339 @default.
- W2773194908 hasRelatedWork W3205031473 @default.
- W2773194908 hasRelatedWork W400803829 @default.
- W2773194908 hasRelatedWork W4283789012 @default.
- W2773194908 hasVolume "131" @default.
- W2773194908 isParatext "false" @default.
- W2773194908 isRetracted "false" @default.
- W2773194908 magId "2773194908" @default.
- W2773194908 workType "article" @default.