Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773202714> ?p ?o ?g. }
- W2773202714 endingPage "1096" @default.
- W2773202714 startingPage "1085" @default.
- W2773202714 abstract "Enzymes with a high selectivity are desirable for improving economics of chemical synthesis of enantiopure compounds. To improve enzyme selectivity mutations are often introduced near the catalytic active site. In this compact environment epistatic interactions between residues, where contributions to selectivity are non-additive, play a significant role in determining the degree of selectivity. Using support vector machine regression models we map mutations to the experimentally characterised enantioselectivities for a set of 136 variants of the epoxide hydrolase from the fungus Aspergillus niger (AnEH). We investigate whether the influence a mutation has on enzyme selectivity can be accurately predicted through linear models, and whether prediction accuracy can be improved using higher-order counterparts. Comparing linear and polynomial degree = 2 models, mean Pearson coefficients (r) from $$50,{times },5$$ -fold cross-validation increase from 0.84 to 0.91 respectively. Equivalent models tested on interaction-minimised sequences achieve values of $$r=0.90$$ and $$r=0.93$$ . As expected, testing on a simulated control data set with no interactions results in no significant improvements from higher-order models. Additional experimentally derived AnEH mutants are tested with linear and polynomial degree = 2 models, with values increasing from $$r=0.51$$ to $$r=0.87$$ respectively. The study demonstrates that linear models perform well, however the representation of epistatic interactions in predictive models improves identification of selectivity-enhancing mutations. The improvement is attributed to higher-order kernel functions that represent epistatic interactions between residues." @default.
- W2773202714 created "2017-12-22" @default.
- W2773202714 creator A5022958013 @default.
- W2773202714 creator A5029588486 @default.
- W2773202714 creator A5045279138 @default.
- W2773202714 creator A5066959335 @default.
- W2773202714 date "2017-12-01" @default.
- W2773202714 modified "2023-10-11" @default.
- W2773202714 title "Learning epistatic interactions from sequence-activity data to predict enantioselectivity" @default.
- W2773202714 cites W1510073064 @default.
- W2773202714 cites W1954202239 @default.
- W2773202714 cites W1964357740 @default.
- W2773202714 cites W1967005788 @default.
- W2773202714 cites W1975867035 @default.
- W2773202714 cites W1976547627 @default.
- W2773202714 cites W1982131304 @default.
- W2773202714 cites W198225355 @default.
- W2773202714 cites W1984180361 @default.
- W2773202714 cites W1987489304 @default.
- W2773202714 cites W1989774978 @default.
- W2773202714 cites W1991521215 @default.
- W2773202714 cites W1991998089 @default.
- W2773202714 cites W1992699280 @default.
- W2773202714 cites W1997379284 @default.
- W2773202714 cites W1998250617 @default.
- W2773202714 cites W1999104032 @default.
- W2773202714 cites W2003621391 @default.
- W2773202714 cites W2004003549 @default.
- W2773202714 cites W2008450196 @default.
- W2773202714 cites W2009556609 @default.
- W2773202714 cites W2014159272 @default.
- W2773202714 cites W2014731953 @default.
- W2773202714 cites W2017519756 @default.
- W2773202714 cites W2020816856 @default.
- W2773202714 cites W2021271879 @default.
- W2773202714 cites W2022042465 @default.
- W2773202714 cites W2022773458 @default.
- W2773202714 cites W2026117532 @default.
- W2773202714 cites W2031318672 @default.
- W2773202714 cites W2044089346 @default.
- W2773202714 cites W2045012207 @default.
- W2773202714 cites W2045332762 @default.
- W2773202714 cites W2047015012 @default.
- W2773202714 cites W2048722894 @default.
- W2773202714 cites W2050161736 @default.
- W2773202714 cites W2060327333 @default.
- W2773202714 cites W2062018285 @default.
- W2773202714 cites W2064164319 @default.
- W2773202714 cites W2066008754 @default.
- W2773202714 cites W2066201640 @default.
- W2773202714 cites W2089394645 @default.
- W2773202714 cites W2091601323 @default.
- W2773202714 cites W2091917976 @default.
- W2773202714 cites W2097061885 @default.
- W2773202714 cites W2097247714 @default.
- W2773202714 cites W2097936772 @default.
- W2773202714 cites W2099560117 @default.
- W2773202714 cites W2111797564 @default.
- W2773202714 cites W2143210482 @default.
- W2773202714 cites W2145122988 @default.
- W2773202714 cites W2148612893 @default.
- W2773202714 cites W2155836971 @default.
- W2773202714 cites W2156454061 @default.
- W2773202714 cites W2156624967 @default.
- W2773202714 cites W2156909104 @default.
- W2773202714 cites W2160622786 @default.
- W2773202714 cites W2161792971 @default.
- W2773202714 cites W2163627198 @default.
- W2773202714 cites W2168826409 @default.
- W2773202714 cites W2169346156 @default.
- W2773202714 cites W2189631135 @default.
- W2773202714 cites W2201717518 @default.
- W2773202714 cites W2234497665 @default.
- W2773202714 cites W2287014099 @default.
- W2773202714 cites W2331461295 @default.
- W2773202714 cites W2463766470 @default.
- W2773202714 cites W2471654536 @default.
- W2773202714 cites W2765744127 @default.
- W2773202714 cites W4213345021 @default.
- W2773202714 cites W4239832041 @default.
- W2773202714 cites W4300859091 @default.
- W2773202714 cites W76498526 @default.
- W2773202714 doi "https://doi.org/10.1007/s10822-017-0090-x" @default.
- W2773202714 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29234997" @default.
- W2773202714 hasPublicationYear "2017" @default.
- W2773202714 type Work @default.
- W2773202714 sameAs 2773202714 @default.
- W2773202714 citedByCount "18" @default.
- W2773202714 countsByYear W27732027142018 @default.
- W2773202714 countsByYear W27732027142019 @default.
- W2773202714 countsByYear W27732027142020 @default.
- W2773202714 countsByYear W27732027142021 @default.
- W2773202714 countsByYear W27732027142022 @default.
- W2773202714 countsByYear W27732027142023 @default.
- W2773202714 crossrefType "journal-article" @default.
- W2773202714 hasAuthorship W2773202714A5022958013 @default.
- W2773202714 hasAuthorship W2773202714A5029588486 @default.
- W2773202714 hasAuthorship W2773202714A5045279138 @default.