Matches in SemOpenAlex for { <https://semopenalex.org/work/W2773312050> ?p ?o ?g. }
- W2773312050 endingPage "279" @default.
- W2773312050 startingPage "269" @default.
- W2773312050 abstract "Traditional methods for named entity recognition (NER) require heavy feature engineering to achieve high performance. We propose a novel neural network architecture for NER that detects word features automatically without feature engineering. Our approach uses word embedding as input, feeds them into a bidirectional long short-term memory (B-LSTM) for modeling the context within a sentence, and outputs the NER results. This study extends the neural network language model through B-LSTM, which outperforms other deep neural network models in NER tasks. Experimental results show that the B-LSTM with word embedding trained on a large corpus achieves the highest F-score of 0.9247, thus outperforming state-of-the-art methods that are based on feature engineering." @default.
- W2773312050 created "2017-12-22" @default.
- W2773312050 creator A5024350063 @default.
- W2773312050 creator A5043141007 @default.
- W2773312050 creator A5047372073 @default.
- W2773312050 creator A5057290993 @default.
- W2773312050 date "2017-01-01" @default.
- W2773312050 modified "2023-09-23" @default.
- W2773312050 title "Chinese Named Entity Recognition Based on B-LSTM Neural Network with Additional Features" @default.
- W2773312050 cites W1525985145 @default.
- W2773312050 cites W1611884111 @default.
- W2773312050 cites W179875071 @default.
- W2773312050 cites W1978990931 @default.
- W2773312050 cites W2032061643 @default.
- W2773312050 cites W2104518905 @default.
- W2773312050 cites W2116261113 @default.
- W2773312050 cites W2117130368 @default.
- W2773312050 cites W2142384583 @default.
- W2773312050 cites W2143612262 @default.
- W2773312050 cites W2296283641 @default.
- W2773312050 cites W2296429112 @default.
- W2773312050 cites W2411964588 @default.
- W2773312050 cites W2567657016 @default.
- W2773312050 cites W2574177360 @default.
- W2773312050 doi "https://doi.org/10.1007/978-3-319-72389-1_22" @default.
- W2773312050 hasPublicationYear "2017" @default.
- W2773312050 type Work @default.
- W2773312050 sameAs 2773312050 @default.
- W2773312050 citedByCount "7" @default.
- W2773312050 countsByYear W27733120502018 @default.
- W2773312050 countsByYear W27733120502019 @default.
- W2773312050 countsByYear W27733120502020 @default.
- W2773312050 crossrefType "book-chapter" @default.
- W2773312050 hasAuthorship W2773312050A5024350063 @default.
- W2773312050 hasAuthorship W2773312050A5043141007 @default.
- W2773312050 hasAuthorship W2773312050A5047372073 @default.
- W2773312050 hasAuthorship W2773312050A5057290993 @default.
- W2773312050 hasConcept C108583219 @default.
- W2773312050 hasConcept C138885662 @default.
- W2773312050 hasConcept C147168706 @default.
- W2773312050 hasConcept C151730666 @default.
- W2773312050 hasConcept C153180895 @default.
- W2773312050 hasConcept C154945302 @default.
- W2773312050 hasConcept C162324750 @default.
- W2773312050 hasConcept C187736073 @default.
- W2773312050 hasConcept C204321447 @default.
- W2773312050 hasConcept C2776401178 @default.
- W2773312050 hasConcept C2777462759 @default.
- W2773312050 hasConcept C2777530160 @default.
- W2773312050 hasConcept C2778827112 @default.
- W2773312050 hasConcept C2779135771 @default.
- W2773312050 hasConcept C2779343474 @default.
- W2773312050 hasConcept C2780451532 @default.
- W2773312050 hasConcept C28490314 @default.
- W2773312050 hasConcept C41008148 @default.
- W2773312050 hasConcept C41608201 @default.
- W2773312050 hasConcept C41895202 @default.
- W2773312050 hasConcept C50644808 @default.
- W2773312050 hasConcept C86803240 @default.
- W2773312050 hasConcept C90805587 @default.
- W2773312050 hasConceptScore W2773312050C108583219 @default.
- W2773312050 hasConceptScore W2773312050C138885662 @default.
- W2773312050 hasConceptScore W2773312050C147168706 @default.
- W2773312050 hasConceptScore W2773312050C151730666 @default.
- W2773312050 hasConceptScore W2773312050C153180895 @default.
- W2773312050 hasConceptScore W2773312050C154945302 @default.
- W2773312050 hasConceptScore W2773312050C162324750 @default.
- W2773312050 hasConceptScore W2773312050C187736073 @default.
- W2773312050 hasConceptScore W2773312050C204321447 @default.
- W2773312050 hasConceptScore W2773312050C2776401178 @default.
- W2773312050 hasConceptScore W2773312050C2777462759 @default.
- W2773312050 hasConceptScore W2773312050C2777530160 @default.
- W2773312050 hasConceptScore W2773312050C2778827112 @default.
- W2773312050 hasConceptScore W2773312050C2779135771 @default.
- W2773312050 hasConceptScore W2773312050C2779343474 @default.
- W2773312050 hasConceptScore W2773312050C2780451532 @default.
- W2773312050 hasConceptScore W2773312050C28490314 @default.
- W2773312050 hasConceptScore W2773312050C41008148 @default.
- W2773312050 hasConceptScore W2773312050C41608201 @default.
- W2773312050 hasConceptScore W2773312050C41895202 @default.
- W2773312050 hasConceptScore W2773312050C50644808 @default.
- W2773312050 hasConceptScore W2773312050C86803240 @default.
- W2773312050 hasConceptScore W2773312050C90805587 @default.
- W2773312050 hasLocation W27733120501 @default.
- W2773312050 hasOpenAccess W2773312050 @default.
- W2773312050 hasPrimaryLocation W27733120501 @default.
- W2773312050 hasRelatedWork W2543875770 @default.
- W2773312050 hasRelatedWork W2773616286 @default.
- W2773312050 hasRelatedWork W2785740378 @default.
- W2773312050 hasRelatedWork W2787045460 @default.
- W2773312050 hasRelatedWork W2792234060 @default.
- W2773312050 hasRelatedWork W2905014578 @default.
- W2773312050 hasRelatedWork W2963625095 @default.
- W2773312050 hasRelatedWork W2968642136 @default.
- W2773312050 hasRelatedWork W2984197860 @default.
- W2773312050 hasRelatedWork W4220740160 @default.
- W2773312050 isParatext "false" @default.
- W2773312050 isRetracted "false" @default.